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ABSTRACT

This report involves the investigation of the mechanical vibration damping
characteristics of glass/epuxy and graphite/epoxy composite materials. The
objective was to develop an analytical model which incorporates the frequency
dependence of the vibration damping loss factor and to experimentally
characterize the loss factor for frequencies up to 1000 Hz.

Numerous analytical models have been proposed to determine the loss
factor of composites, including micromechanical, macromechanical and
structural models. Of these generic types, the macromechanical models
incorporate important material characteristics which can affect the loss factor.
The most widely accepted model utilizes the elastic viscoelastic conespondence
principle. Although investigators acknowledge the viscoelastic characteristic of
composites, they fail to incorporate the frequency dependence in their analysis.
In this effort, the elastic viscoelastic correspondence principle is extended to
incorporate the frequency dependence of the composite material.

The analytical model requires as input the inplane material loss factors as a
function of frequency. An experimental apparatus was designed and fabricated
to accomplish this. Cantilever beam specimens were utilized, which were
excited using an impulse from an instrumented force hammer. The loss factor
was calculated using the half power band width technique. The apparatus was
calibrated using a well characterized low damping material. The effect of
clamping pressure and of the clamp block to specimen interface material was
also investigated.

While testing the composites, it became evident that the amplitude of
vibraton had a pronounced effect on the calculated loss factor. Calculated loss
factor were significantly reduced if the tip displacement amplitudes vs. time
were lower than 0.001 in. for more than 25% of the data set. To alleviate this
problem, a robust testing methodology was proposed and tested. This test
method is then utilized to determine the composite inplane loss factors.

The analytical model was validated using two generic laminated
configurations. The model predictions were within the scatter of the
experimental data. Parametric studies were also performed using the model.
Trends shown by other investigators as well as inconsistencies between them
were accounted for by this model.
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EXECUTWE SUMMARY

This report presents information on a multiyear research investigation of the

mechanical vibration damping of thermoset matrix composite materials. The objective of

this effort was to develop an analytical model which could determine the mechanical

vibration damping of an arbitrary composite laminate in a specified frequency range. A

detailed discussion on the objective of this program is presented in Chapter 1 following the

Introduction..

Chapter 2 presents a detailed chronological literature survey of the vibration damping

research performed on composite materials. This survey is divided into two main sections;

test procedures and experimental results, and analytical models for determination 3f the

damping loss factor. 'ihe experimental teclnique that has gained wide acceptance for the

determination of the damping loss factor of composites utilizes a cantilever beam. The

beam is excited using an instrumented impact hammer and the beam response is measured

with a noncontact eddy curreni probe. The mechanical vibration damping loss factor is

then determined using the half power band width tecbnique.

The damping loss factor for composite materials has been shown experimentally to be

dependent on the fiber angle, specimen thickness, the resin system used, the frequency of

test, the fiber volume fraction, fiber diameter, beam stiffness, state of damage in the

xiv



material, and, in scme cases, on the stress amplitude. The type of fiber used also affects

the damping loss factor due to the fiber's contribution to the damping or to the difference in

the interface properties of the fiber and resin systems investigated. Increasing the fiber

volume fraction, the fiber diameter, the specimen thickness, and the beam stiffness reduces

the damping loss factor. In most cases, increasing the amount of damage in the material,

the stress amplitude of test, or the frequency of test increases the damping loss factor.

The theoretical models presented in Chapter 2 can be categorized as micromechanical,

macromechanical or structural. The models discussed are currently inadequate for design

purposes. The micrornechanical approaches for determining the loss factor of composite

laminae do not incorporate the material characteristics that have been shown to affect the

loss factor. In addition, they do not take into account the frequency dependence loss factor

chardcterisuic of the matrix. Tne macromechanicai approaches also do not account for the

frequency dependence, i.e the viscoelastic characteristic, of the composite material. In

addition, there does not exist an adequate characterization of the material loss factor which

could be utilized as input to t, -se macromechanical models. The structural approaches do

not account fer either thr frequency dependence of the loss factor or the anisotropic

variation in loss factor.

Chapter 3 presents the analytical model developed in this research. The mnodel is

based on the elastic viscoelastic correspondence principle. In this research, the frequency

dependence of the damping loss factor is included, thereby extending the model as it is

currently used in the literature. The frequency dependent complex moduli of a lamina is

utilized in classical lamination theory to determine the various complex reduced stiffnesses

xV



of the composite laminate. The laminate loss factors at any frequency can then be

determined as the ratio of the complex to real part of the specific component of the effective

moduli. The importance of this model is that from limited lamina complex modul;i, the

damping loss factor at a specific frequency can be determined, in the analogous manner to

the methodology used for determining the effective material properties of a composite.

Chapter 4 presents the experimnntal set-up, the computer hardware utilized and the

software written to determine the damping loss factor of the composites. In order to ensure

that the loss factor results obtained were of the material and not from any other sources of

energy dissipation, such as friction at the clamped area of the specimen, aerodynamic

damping, or inadequacies in the acquisition system, the set-up and procedure were

calibrated using a well characterized, low damping material system, 2024 T-4 aluminum.

Chapter 5, a robust testing methodology is proposed for the determination of the

material damping loss factor of composite materials. This is shown to be necessary for

composites because of their high damping loss factor. During the experimental testing of

the composite specimens, it was shown that it is necessary to determine the applicability of

the displacement information prior to performing data reductions for loss factor

determination. Incorporation of near zero displacement information, or displacements that

are on the same order of magnitude as the noise of the system, has the effect of lowering

the calculated value of the loss factor. This occurs because of the effective averaging of

this loss factor with the loc.ses that occur at thA larger more resolvable displacements.

Another reason for errors occurring when the near zero displacements are included in the

determination of the damping loss factor is due to the reduction of the sensitivity of the
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sensors measuring the beam tip displacements as the tip displacements are reduced.

The proposed robust testing methodology initially requires a well designed apparatus

that has been calibrated using a well characterized test specimen, as has been described in

Chapter 4. Following the beam excitation, the magnitude of the beam tip displacement vs.

time must be visually or numerically interrogated to insure that the displacements remain

greater than the noise and resolution of the sensor and data acquisition system. If not, the

resultant experimentally determined loss factor may be lower than the actual material loss

factor. If measured displacements less than 0.001 in. (0.025 mm) are incorporated in the

FFT analysis, and constitute more than 25% of the displacement vs. time curve, the loss

factor that is calculated will be lower than the actual material loss factor.

The damping loss factor results are shown to be dependent on the amplitude of beam

tip displacements. It is proposed that the material loss factor can be obtained by

determining the loss factor versus tip displacement by partitioning the beam vibration

response into subsets. The loss factor within each of these subsets are then determined and

plotted versus the maximum beam amplitude within the subset. The material loss factor is

then obtained by performing a linear fit on this data and extrapolating to zero displacement.

This zero displacement loss factor is then assumed to be the material loss factor. The

extrapolation to zero displacement should reduce the extraneous losses, providing a more

robust testing protocol. In addition, it is hypothesized that the loss factors that result are

more representative of that which would be experienced by an actual structimn: since, in the

majority of cases, displacements are small and/or the structures are restrained from

e' periencing large displacements.
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In Chapter 6, the results of the experimental testing of the material loss factors for

AS4/3501-6 and S-2 Glass/3501-6 composites are presented. The loss factor for the 90

degree S-2 glass/3501-6 and AS4/3501-6 unidirectional composites is a nonlinear function

of frequency, showing an increase in loss factor with increasing frequency. The loss factor

for the 0 degree S-2 glass/3501-6 and AS413501-6 unidirectional composite appears to be

linear, showing an increase with increasing frequency. From experimentally determined 0'

and 90' loss factor information, a methodology is given to determine the shear loss iactor

based on the loss factor results obtained in a + 450 beam specimen. The results of

experimental investigations in the literature which attempt to determine the effect of fiber

orientation on loss factor are analytically investigated using the model described in Chapter

3 and the experimental data obtained in this chapter. The incorporation of the frequency

dependence of the loss factor is shown to analytically explain the discrepancies in the

literature on the ioss factor as a function of fiber orientation. The results of the model show

that for different frequencies, the fiber orientation at which the maximum damping loss

factor occurs can be different In addition, the differences that occur when considering

angle-ply versus off-axis results is shown, using the analytical rodel, to be the result of

the stress coupling eff'ects on loss factor.

In Chapter 7, results are presented on the experimental validation of the analytical

model. The validatioa is performed on quasi-isotropic S-2 Glass/3501-6 beams. Two

configurations were used: (900/0/-45,45)2, and (45/-45/90/0)2s. The analytical model based

on the elastic viscoelastic correspondence principle appears to provide an excellent

prediction of the damping ioss factor of a general laminated composi,, configuration over a

given frequency range. Trends occurring experimentally in the material are shown to occtw

using the analytical model. The analytical model has been shown to provide a loss factor
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which is within 15% of the experimentally dcteramined values in the frequency range of 50

to 500 Hz.

Chapter 8 discusses the conclusions from this research investigation. The analytical

model, an extension of the elastic-viscoelastic correspondence principle incorporating the

frequency dependence of the loss factor, is an accurate analytical tool that can be used to

determine the loss factor of a general laminated composite plate. In addition, the proposed

robust testing methodology is summarized.

Chapter 9 presents five areas of investigation which would add to the kltowledge base

and testing capability of the vibnatio' damping of composites. The areas identified are:

1 -, . -,.I.. 1 • 1 --- *2 - ._ A, -r" - - -• -e.'. ... t l-. .. .. -- .. ...
e-ltIJU'" iU.U LIVULl UIJgl%, Ulbplat.,.•gl;iLMII bV11W1 Ul VL L ULUALQVIC; I Q II V gIIC;I.LL UVII ViI

damping loss factor, damping optimization using hybrid composite design; genuralized 3-D

elastic viscoelastic model.
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INTRODUCTION

The vibration damping characteristics of various structural applications play a

dominant role in the choice cf configuration and materials. Metals, in general, possess a

very low vibration damping loss tactor. For the majority of structures that are

manufactured using metal, however, damping is not considered to be a problem. For

example, cantilevered structures such as aircraft wings have potential vibration problems.

In these structures, aerodynamic and/or structural loading can set up vibrations within the

structure. Since the materials used in many of these applications (aluminum or titanium)

have very low material damping loss factors, an excitation at resonance could lead to

I
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potential failure from fatigue overloading caused by the growing amplitude of vibration. In

reality, this is not a problem, not because of the material, but because of the structural

configuration typically employed. In the above example, the wing is manufactured using

thousands of mechanical fasteners. When the wing is set into vibration, each of these

fasteners becomes a site of energy dissipation by virtue of the friction occurring there. The

structural configuration therefore possesses adequate energy dissipation to prevent

structural degradation from in-service loading.

Energy dissipation around fastener sites is also possible in composites as well. In

practice, however, one advantage of composites lies in the ability to reduce the number of

parts and thereby the number of fasteners. Because of this reduction, the damping cf the

composite material becomes more important in the overall damping of the structure.

Theae has been only a limited number of investigators who have been concemed with

the vibration damping response of composites. Typically, their investigations have dealt

with either the development of experimental procedures and subsequent determination of

the quantitative values of the damping loss factor, or with the development of analytical

models capable of determining the composite material loss factor.

The majority of composite structures that are under consideration are manufactured

using thermoplastic or thermoset polymer matrices. These matrix systems are viscoelastic.

This means that as the material is loaded, the strain and stress are not in phase; rather the

strain lags the stress(I). A composite material that is manufactured with these viscoelastic

materials will also exhibit this viscoelastic characteristic. In general, the composite's
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vibration damping response will be a combined response of the matrix and fibers that are

used.

Typically, the damping loss factor of the polymer -natrix materials normally used iz.

composites is temperature dependent with certain characteristic features. Figure 1 is a

generic representation of the loss factor of a polymer as a function of temperature at

constant frequency. In general, there are three peaks present. These peaks are denoted as

the alpha, beta and ganma transitions. It has been proposed that different mechanisms are

responsible for the high energy dissipation associated with each of !hese transitions. The

low temperature or high frequency transition, also called the alpha transition, has been

associated in the literature with chain segment mobility (2). The largest peak in loss factor,

the beta transition, is associated with the glass transition temperature. It has been proposk J

that losses occur here from long range motions of the amorphous polymer chains or

rotations that can occur with the material passing from the glassy to rubbery or liquid state

(1,3). The third peak that has been detected at temperatures above the glass transition, the

gamma peak, is associated with net translatory motions of the amorphous chains and

decrease in elastic modulus of the polymer (4).

For a generic polymer system, the frequency dependence of the loss factor has an

inverse correspondence to the temperature dependence. As discussed above, a polymer

may exhibit either an increase or decrease in loss factor with increasing frequency

depending on the specific characteristics of that polymer. When incorporated into a

composite system with continuous fibers, this fr, uency dependence of the loss factor

should also be present.



4

pi

T-

0i

C,)

Temperature

Figure 1: Schematic variation of loss factor with temperature for
an amorphous polymer at constant frequency.

For a generic polymer system, the frequency dependence of the loss factor has an

inverse correspondence to the temperature dependence. As discussed above, a polymer

may exhibit either an increase or decrease in loss factor with increasing frequency

depending on the specific characteristics of that polymer. When incorporated into a

composite system with continuous fibers, this frequency dependence of the loss factor

should also be present.

Previously, neither experimental nor analytical studies have taken this frequency

dependence into account. Yet, the composite material loss factor needs to be determined as
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a function of frequency to obtain an accurate chaiacterization of the material. In addition, to

determine the effects of various material characteristics on loss factor, it is neccssary that

comparisons be made at identical frequencies.

The purpose of this research is to develop a frequency dependent analytical model,

based on material characteristics, that is capable of determining the material loss factors of a

general laminated composite configuration. The material loss factor can then be used as

input for structural analysis of composite components. To ensure that the material

characteristics that have been shown to affect the loss factor are incorporated into the

analytical model, a detailed literature survey was carried out. This survey will be presented

in chronological order, detailing the experimental techniques used and the results obtained

for the damping loss factor of composites, as well as proposed analytical models.

A macromechanical analytical model is presented that incorporates the relevant

micromechanical effects of the material. An experimental apparatus is described as well.

To ensure that environmental sources of energy dissipation are minimized, the apparatus is

calibrated using a well characterized metallic material. A robust testing methodology is

then proposed for use in the determination of the material loss factors. This testing

methodology is then used to determine the material loss factors of AS4/3501-6

graphite/epoxy and S-2 Glass/3501-6 composites.

The loss factors of two generic S-2 glass/epoxy configurations are then determined

using the analytical model. The results of this model are compared with the experimentally

determined loss factors to assess the validity of the proposed model. In addition,
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parametric studies are performed using the proposed model to deteniine the effect of fiber

orientation and stress couplings on the loss factor of S-2 glass/epoxy composites.

Finally, topics for future work are proposed in an attempt io provide improvements

to the experimental technique, to experimentally examine the effects of specific material

characteristics on loss factor, and to provide a more universal analytical model for

incorporation into structural analysis routines.



Chapter 1

RESEARCH OBJECTIVE

Organic matrix composite materials are viscoelastic because of their material

constituents. This means that they have rate and temperature dependent properties. One

property that has yet to be taken advantage of is their inherent vibration damping.

There are two plausible reasons that composite design does not incorporate

considerations for damping. One is the lack of an analytical model that can be easily

incorporated by the designer using existing structural analysis codes. The second reas I is

that there is a lack of experimental information available which can be used to either

determine the frequency dependent loss factor or to verify proposed analytical models.

The purpose of this research is two fold. The first goal is to develop an analytical

model which can account for the frequency dependent damping loss factor characteristic of

organic matrix composites. This model should be capable of determining the various

directional dependent loss factors that the material will possess. These directional

dependent loss factors occur because of the directional dependence of the material

properties of composites. The analytical model will attempt to incorporate the material

characteristics which can affect the damping loss factor and will be formulated to provide

information that the structural analyst can utilize in the design of high damping structurafly

7
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efficient composite components.

In addition to the development of an analytical model, :he experimental determination

of the damping loss factor will be undertaken. This experimental investigation will be used

to verify the analytical model and to provide insight into the material characteristics which

affect the vibration damping. This experimental effort will consider first and foremost the

appropriateness of the technique. In the testing of materials for damping properties, the

damping of the material as well as the damping provided by the test environment must be

determined. To obtain an accurate characterization of the material loss factor, the developed

experimental technique considers methodologies to minimize all sources of possible energy

dissipation. To ensure that the technique minimizes external sources of energy dissipation,

the system will be calibrated using a material which has a low damping loss factor and has

a loss factor which can be analytically determined over an appropriate trequency range.

With this developed, calibrated exl;e,-inental technique, the dlamping loss factor cf

two composite systems will be detennined over a frequency range of interest for structural

applications, up to 1000 Hz. The materials which will be tested are AS4/3501-6 graphite

c 9o-(y z,?d S-2 Gilass/35al-6 glass epoxy. These two systems are being investigated

because of their FjCscrnt consideration for numerous structural applications. Determination

of the loss factor as a function of frequency will provide information with which to verify

the analytical model as well as specific information which can be used for struLtural

damping designs.



Chapter 2

BACKGROUND

In order to assess the state of technology on the mechanical vibration damping of

composites, a chronological historical review of the research published to date on the

damping loss factor of composites will be given. This survey will be limited to continuous

fiber organic matrix composite materials. This background is divided into two main

sections: experimental results of the vibration damping of monolithic composites and the

analytical models that have been developed to predict the vibration damping of these

coposites. L lein Irauu, .. rii. se i-s foi tesi specimel gC-miLtrics oSl0y, so that -

material characteristics that affect loss factor can be identified. The experimental values of

loss factor and the techniques used are reported so that the material and procedural

characteristics that affect the damping loss factor, such as specimen geometry and mode of

excitation, can be identified. In addition, the results of the research performed by the

various authors are compared to highlight inconsistencies in their results. These

inconsistencies are considered in the design and development of a robust testing

methodology.

Another configuration that has been intentionally omitted from this discussion is the

constrained layer configuration. Several reviews have been written on this area. Interested

readers are referred to references 5-7.

9
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Continuous fiber organic matrix composites have been utilized for numerous

structural applications because of their structural performance, the weight savings

achievable and the reduction in life cycle costs they may allow. Composite structures also

have the added advantage of co,:osion resistance and design flexibility. An additional

property possessed by the composite materials is their inherent vibration damping

characteristics resulting from the numerous loss mechanisms within the material.

In general, the damping loss factor for metals is a function of frequency. A typical

maximum value of the damping loss factor for 2024-T4 aluminum is approximateiy 22x104

[Crandall (8)], mild steel has a maximum loss factor of approximately 17x 10-4 [Friend and

coworkers (9)], and brass has a maximum loss factor of approximately 8x 10-4 [Macander

and Crane (5)]. Composite materials, by comparison, have shown damping loss factors as

high as 325x 10-4 for a standard GY-70/934 unidirectional composite oriented in the 90

degree direction [Haines (10)]. In the 0 degree direction, the loss factor for a general

graphite/epoxy composite is approximately 30x10-4 [Suarez and Gibson(l 1)]. These

examples of composite loss factor show that composite materials offer the possibility of an

order of magnitude increase in damping over conventional structural metallic systems.

The literature was searched using the following search data bases: DIALOG, NTIS

data base; DIALOG, Aerospace data base; DIALOG, METADEX data base; DIALOG,

ISMEC Mechanical engineering data base; DIALOG, SCI data base: and DTIC (Defense

Technical Information Center). In addition to these data bases, independent :earches

through the Journal of Composite Materials, Composites, ASTM Conference Proceedings,

SESA Conference Proceedings, AIAA Conference Proceedings, and other composite
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related publications were carried out to identify articles on composite vibration damping.

This latter independent search was to ensure that important publications not in the above

mentioned data bases were not overlooked.

Review of Terminology

Dynamic mechanical vibration damping is defined as any process that transforms the

energy of a mechanical vibration into some other form of energy which is irrecoverable.

From an energy standpoint, then, the mechanical vibration damping is the ratio of the

change in stored energy of the system, AW, to the maximum stored energy during a cycle,

W. The change in stored energy per cycle is therefore the energy loss per cycle. This

value has then been defined using other terminologies such as the specific damping

capacity,,4, the damping loss factor,71, the dyiiamic amplification factor, Q, and the

logarithmic decrement, 8. The relation between these various values is given as follows;

A W = 2xq =L.• = 28-W-=

= = im =(1)

In this disssertation, the damping values are reported in units of damping loss factor,

rl. From the relations given in equation 1, then, if all of the energy is dissipated in one

cycle, the value of ti will be 0.159. A material loss factor of 0.1 for a structural

applications is in general very desirable.
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Experimental Testing of L mina posit

There has been a proliferation of work on the mechanical vibration damping of

lamir.ated composite materials. The composite material that has been investigated most

often for its vibration damping response is graphite/epoxy. This material has been utilized

in fatigue critical applications. As such, if a graphite/epoxy structure is set into undamped

resonant vibration, fatigue degradation is possible, which can severely reduce the service

life of the structure.

Because of this fatigue problem, it is not surprising that the earliest research on the

problem of damping was conducted by the Air Force. Kurtze and Mechel (12) investigated

the use of various materials that could be utilized as a core material for sandwich structures.

Instead of considering single composite systems, various hybrid combinations of systems

were investigated in order to possibly maximize the damping over a wide range of

frequencies. The core material used included glass fiber and asbestos embedded in various

fluorine-containing polymers and viscoelastic materials. In this work, they investigated,

among other things, the effect of fabricating a structure with a stratified arrangement of

different materials. Each material had a different frequency and temperature at which the

maximum damping loss factor occurrred. They assumed that it might be possible in this

type of arrangement to achieve a structure having the additive qualities of the various

subsystems, and that this would result in a structure with high damping characteristics over

a large temperature and frequency range. Their testing, however, showed that, in the

stratified arrangement. achieving these additive qualities of the various subsystem materials

was not possible. The reason is that when a material having a high shear loss factor at a
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correspondingly higher temperature is covered by a material which has a lower shear loss

factor and shear modulus, the first material cannot experience a full shear deformation. The

reason is that the majority of the shear motion occurs in the softer layer. If the shear

properties of the various materials are nearly equal at the various temperatures, and these

materials have maximum loss factors at various frequencies, then it may be possible for an

additive type vibration damping effect to result. In most cases, however, the shear moduli

of these different materials are very different, thereby nullifying the additive effect.

Kurtze and Mechel (12) then investigated the properties that would result if the

materials with various loss factors at various frequencies and temperatures were arranged in

a parallel strip arrangement. Using the same material as in the first study, they achieved a

partial additive effect in the damping characteristics of the parallel strip sandwich structure.

However, no quantitative data are presented concerning the results of the parallel

arrangement of the materials.

Schultz and Tsai (13) investigated the damping ratios of unidirectional glass fiber

reinforced composite beams. These beams were tested in free and forced vibration in a

cantilever beam configuration. The E-glass beams were 0.005 in.(0.127 mm) thick and

had widths of 0.75 or 1.0 in.(19.0 or 25.4 mm). These beams had a total length of 13.5

in. (343 mm). The specimens were tested by securing them midway along their length via

two hardened steel cylinders which were in turn attached to the moving element of an

electromagnetic vibration exciter. These beams were excited via a sine wave mode into

their various natural frequencies. The excitation amplitude of oscillation was monitored by

an accelerometer while the response was monitored by a foil strain gage mounted on the top
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of the specimen near the clamped end. The excitation and response signals were observed

on an oscilloscope. The resonant frequencies were determined by observing the peaking of

the response on the oscilloscope trace while varying the input excitation frequency, keeping

a constant excitation amplitude. For the low frequencies of vibration, the free vibration

decay measurements were used to determine the damping loss factor. In this method, the

beam is excited into its resonant vibration, the power to the exciter is cut, and the response

amplitude decay is measured on an oscilloscope trace. The decay response is measured

over 10 and 50 cycles. The loss factor is then determined using the following equation

'n[ oIi
ao j
n (2)

where ao is the amplitude of the forced resonant vibration when the excitation is removed,

an is the amplitude of the vibration at the n'h cycle after the power is cut to the exciter and n

is t1h,: :le at which the amplitude a, is measured- The damping loss factor for higher

mode, excitation was determined using the half power band width method [Newland

(14)]. In this method, the width of ,sponse at -3dB of the peak of the resonant

frequency, ;,, is determined. The .. • of this value to the resonant frequency, fn, is the

damping' -s factor for the material at a particular frequency. The loss factor is therefore

given by

At-",_

1=fn (3)

The f :quency and the band width necessary for determining the damping loss factor were

determined by direct measurements on the oscilloscope trace.
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These methods had the disadvantage that they required a visual interpretation of either

the decay of the amplitude of oscillation, since this decay was read directly from the

oscilloscope trace, or the band wvidth at -3dB of the resonance peak. Also, the actual

determination of the decay was a time-consuming process. In addition, direct comparisons

with other samples were difficult since the only hard copy of the data was from the

photographs of the oscilloscope trares.

Four angle-ply orientations were tested. These included 0, 22.5, 45, and 90 degree

specimens. Results showed that the materials could be ranked in decreasing order of

damping as follows: 45 > 90 > 22.5 > 0. In all cases, the damping tended to increase with

increasing frequency.

In this investigation, the effect of environmental sources of energy dissipation

appears to have been neglected, such as aerodynamic damping and the effect of the

clamping on the specimen. Because of this, the magnitudes of the loss factor are in

question.

Adams and coworkers (15) investigated the damping of unidirectional carbon and

glass polyester reinforced composites. The purpose of the work was to determine if the

damping capacity of the composite could be predicted from knowledge of the fiber content,

the matrix, and the macroscopic stress system, and the effect, if any, of the fiber-matrix

interface. The damping values reported in the paper are in units of damping capacity, W.

The relationship between the damping capacity and the damping loss factor, 1], was

previously given in equation 1.
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The carbon fiber used in this investigation had a tensile modulus of 55 x 106 psi

(379 GPa ) and a tensile strength of 250 ksi (1.72 GPa). The glass fiber was an E-glass

with typical tensile modulus and strength of 10.5 x10 6 psi (72.4 GPa) and 500 ksi

(3.45 GPa). The specimens were tested in both torsion, to measure the specific damping

capacity of the forced vibration, and in flexure, to measure the damping capacity in the free

mode oscillation. The latter technique had the specimen supported at its node points by

knife edges. This is the only investigation presented herein which tested the composite

using knife edge supports. The experimental procedure that is currently used suspends the

beam specimens from two of its node points by strings. The fiber volume fraction of the

glass specimens investigated by Adams and coworkers (15) was varied from 0 to 70%.

The fiber volume fraction of the graphite composite specimens was varied from 0 to 50%.

iM die flusiuIll t•Sui!g, Wiet audis U epouired Ifi.JI L tthaLt tle UamP-ing loss ISfactor of 'the- •c 1a-bNJ

fiber composite was dependent on the stress amplitude. This dependence was attributed to

the development of internal damage in the material which led to the increased damping as

the stress amplitude was increased. In the glass system, however, the damping loss factor

was independent of the stress amplitude. Both fiber systems showed a decrease in the

damping loss factor by approximately a factor of two as the fiber volume fraction of the

systems was increased (Figure 2). This decrease can be attributed to the fact that the resin

makes a strong contribution to the damping capacity of the material, whereas the fibers'

contribution is substantially less.

In the flexural testing, the damping loss factor showed a decrease as the fiber volume

fraction was increased, similar to the decrease seen in the torsion testing (see Figure 3). It
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Figure 2 Comparison for the damping loss factor for graphite/epoxy (CFRP) and
glass/epoxy (GFRP) unidirectional composite materials as a function of fiber
volume fraction at constant maximum shear stress of 200 lbfAn 2 (1.4 MPa)
tested in torsion (after Adams and coworkers (15)).



18-

150

125

* CFRP

"* GFRP

100

0

.,,

(75

50

C
-J

2

25

0 10 20 30 40 50 60 70

FIBER CONTENT BY VOLUME (%)

Figure 3 Variation of the damping loss factor for graphite/epoxy (CFRP) and glass/epoxy
(GFRP) unidirectional composite materials as a function of fiber volume fraction
tested in flexure (after Adams and coworkers (15)).
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was shown that the stress amplitude had a mild effect on the damping loss factor, with the

carbon fiber experiencing a slight increase similar to the increase seen in the torsion testing.

In the glass fiber composite, a slight decrease occurred as the stress amplitude was

increased, unlike the effect that was seen in the torsion testing. The damping loss factor of

the two systems experienced nearly identical degradations as a function of the fiber volume

fraction, reaching an asymptotic value of damping loss factor of 16x 10-4 at a fiber volume

fraction of approximately 60%. This result - that the damping loss factor of the

glass/epoxy decreased as the amplitude of vibration increased - is conu ary to what was

expected, since aerodynamic damping should provide a contribution to the material

damping; no explanation of its cause was given. In the torsion testing, the damping loss

factor showed a linear decrease with increasing fiber content, whereas the damping loss

factor for the flexural testing showed a rapid dropoff with increasing fiber content.

Adams and coworkers (15) identified the possibl - sources for the energy dissipation

as the fibers, the resin, the fiber-resin interface, and cracks in the material. All of these

variables, with the exception of the cracks, can be modified to fit the specific needs of an

application. The factors having the largest contribution to the damping loss factor are the

resin and the fiber-resin interface, both of which can be readily varied.

Another variable that was not considered in this investigation was the effect of

frequency on loss factor. As the material is made stiffer, the resonant frequency is

increased when identical specimen geometries are utilized. The frequency dependence of

the matrix material loss factor is unknown, although it can be assumed that a frequency

dependence exists. The effect of fiber volume fraction on loss factor given in this
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investigation cannot be explicitly extracted.

Clary (16) investigated the effect of fiber angle and panel thickness on the damping of

boron epoxy composite panels. In all cases, the panel configuration was that of an angle

ply, ±0. The fiber angles investigated were 0,10,30,45,60,and 90. Panel thicknesses

were. 0.033, 0.060, and 0.111 in. (0.84, 1.53 and 2.82 mm) corresponding to 6, 12 and

24 ply laminates. Typical fiber volume fraction was between 48 and 50%.

The specimens were tested by suspending them from two node points which were

experimentally determined for each frequency of vibration used. The panels were set into

resonant vibration via an electromechanical shaker with the peak amplitude determined by

an accelerometer attached to the specimen. After steady state vibration was achieved, the

power to the shaker was cut and the decay in the vibration amplitude determined. Polar

plots of the form of magnitude and phase of the input acceleration normalized to the input

force were obtained. The damping loss factor was obtained from these plots.

"The results of the testing indicated that the damping loss factor was inversely

proportional to the number of layers of the composite. As the number of layers increased,

it was shown that the fiber angle at which the maximum damping loss factor occurred

decreased from 60 degrees for the 6 ply laminates to 30 degrees for the 24 ply laminates.

The damping loss factor of the composite panel showed only a moderate increase over that

of aluminum. The maximum damping loss factor of the boron/epoxy specimens tested was

62x10.-4 This value is high compared with some of the other composite samples that will

be discussed later.
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It should be noted that as die thickness of the material is increased, the effective beam

stiffness is also increased. This results in an increase in the resonant frequency of the

beam. As such, the effect of thickness on the beam loss factor determined by Clary (16) is

in actuality a combined thickness/frequency effect.

The investigation by Clary (16) complements the earlier experimental investigation on

the effect of fiber orientation on the damping loss factor performed by Schultz and

Tsai (13) who dctermined the damping loss factors at only one thickness. The results from

these two experimental programs show the complexity involved when one must design a

composite structuie to r•.'aximize damping. In one case, one could first specify the fiber

angle so as to maximize damping. This would then dictate the thickness of the composite

necessary to meet the desigi! loadings. However, from the results of Clary (16), it is seen

that increasing the thickness of the composite has the effect of reducing the material

damping loss factor, as a result of either the thickness itself or the variation in the resultant

resonant frequency of the structure. This means that the damping provided by the specific

fiber orientation may be partially negated by the added thickness. Another fiber angle

which has a lower damping loss factor may require a structural thickness less than the first

design, which may actually result in a structure with increased damping. Therefore, the

design to maximize the damping of a structure will obviously be an iterative process on

both fiber orientation and thickness.

In addition to the frequency effect, one other factor was not taken into consideration

for the material tested. For the off-axis materials tested by Clary (16), a bending twisting

coupling occurs when the specimen is placed in bending because the material is
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unbalanced. The twisting that is occurring may alter the damping through additional energy

dissipation. The magnitude of the twisting effect is reduced as the material thickness is

increased. This would result in a decrease in the contribution to the specimen damping loss

factor due to the reducdon in twisting as the material is made thicker.

In another experimental study, Schultz and Tsai (17) investigated the effect of panel

stiffness and frequency of test on the damping loss factor of glass fiber reinforced

laminates. To determine the effect of stiffness on damping, they experimentally determined

the 3torage and loss moduli of quasi-isotropic E-glass panels. Two panel configurations

were used, (0/60/-60)s and (0/90/45/-45)s. The experimental procedure utilized the free

vibration decay of a sinusoidally excited double cantilever beam specimen that was excited

to its natural frequencies up to the tenth mode. The damping loss factor was determined

using the half power band width method, equation 3. The same test apparatus was used as

one described previously [Schultz and Tsai (13)].

To verify that their results were a function of the material and not of the test

procedure, Schultz and Tsai (17) performed additional tests on the specimens. First, the

test apparatus was placed in a vacuum chamber evacuated to a pressure of i0.2 torr.

Second, they varied the clamping pressure of the specimens in the test fixture. Neither of

these two experinmental setups changed values of the loss factor obtained in the routine

procedure described previously.

The results of the testing indicated that the static modulus was between 0 and 20%

lower than the dynamic modulus. There was also an increase in modulus with increasing
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frequency. The relation between the resonant frequency and the modulus is given by th(

following equation:

F, 
(Bn L) 2

2n [Ebh3/12p.L 4 ] 5  (4)

where Fn is the nth mode resonant frequency; Bn is the corresponding eigenvalue of the

frequency equation governing the motion of a uniform cantilever beam; E is the effective

storage modulus; g. is the mass per unit length; and b, h and L are the beam width,

thickness and length, respectively.

As part of their experimental program, Schultz and Tsai(17) determined the dynamic

properties of the material, i.e. E1, E2, G12, and V12 . Their results showed that the

analytically determined static and dynamic moduli were predictable with the knowledge of

the ply properties for the two configurations used in this study. The static and dynamic

moduli of the material were then used to predict the complex moduli of various laminate

configurations using standard transformation procedures. The damping loss factor was

then analytically determined from the predicted complex moduli of the laminate using the

following equation:

ell

Ell (5)

where e'lI is the imaginary part of the complex modulus and E'11 is the real part of the

complex modulus of the particular laminate configuration in the primary loading direction.

Predicted properties of the unidirecticnal laminate were in good agreement with properties
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determined experimentally. The experimentally determined damping loss factor for the

quasi-isotropic laminates was as much as 55% higher than that predicted analytically.

Plotting their results of the damping loss factor versus the direction of the outer ply fibers

to the flexural loading direction, Schultz and Tsai (17) obtained an asymmetric curve about

0 degrees. This asymmetry was present for both of the laminates tested. This result is

expected, since the stiffness of the beams tested with the outer fibers oriented at different

angles to the longitudinal axis of the beam have inner plies which have different

orientations. For example, if the (0/±60). quasi-isotropic beam is rotated 30 degrees, the

beam effectively becomes (30/90/-30),, whereas when the beam is rotated by -30 degrees it

effectively becomes (-30/30/90),. an obviously stiffer configuration in flexure. In addition,

the analytical predictions also showed this asymmetry.

Another factor riot noted explicitly in the curves which presented the loss factor as a

function of fiber orientation was this: the frequency at which the results were plotted was

not the same for each fiber orientation tested. In the same paper, however, Schultz and

Tsai (14) experimentally showed that there is a frequency dependence on the loss factor, as

will be discussed below. The results that were actually reported did not indicate the fiber

angle dependence of loss factor, but instead a combination of the effect of fiber angle and

frequency on the loss factor.

In their investigation on the effect of frequency, Schultz and Tsai (17) again used the

quasi-isotropic E-glass laminates. They varied the outer fiber orientation, thereby varying

the flexural stiffness of the material. For both laminates, the loss factor was determined

with outer ply angles of 0, 45 and 90. As the frequency was increased from the first
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resonance, the damping decreased to a frequency of approximately 800 Hz. As the

frequency was increased from this level, the damping loss factor increased with frequency

up to the highest frequency of test, approximately 10000 Hz. The maximum damping loss

factor was obtained from the (0/60/- 60), laminate tested in the 90 degree direction, having a

value of approximately 151 x 104 . The minimum value of the damping loss factor was for

the (0/6 0/-60), panel tested with the outer fibers in the 0 degree direction, having a value of

approximately 25x10-4.

Friend and coworkers(9) described some of the general test methodologies and

commented about the vibration damping characteristics of composites. They reported that

five methods are used for testing these materials to determine the mechanical vibration

damping characteristics of the material. Two of these are more prevalent than the others.

The first method utilizes a forced vibration at the resonant frequency. The damping loss

factor is calculated from the curve of amplitude versus frequency by dividing the bandwidth

at the half power points for the resonance of the nth mode, Af, by the response frequency

of the nAh mode, fn, as given by equation 3. The second method involves striking the

material and measuiing the free decay in the amplitude of the vibration. The damping loss

factor is then determined as the ratio of the successive amplitudes of vibration of the

specimen as given previously by equation 2.

Friend and coworkers (9) indicated that the damping of the material is a function of

many variables, including the thermal conductivity, modulus, void content, and fiber to

resin bond effectiveness, among others. They summarized the vibration damping of

various metallic and composite systems. This information is shown in Table 1. Here it can
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be seen that ,he damping loss factor is a function of angle for the composite systems. The

90 degree orientation has the highest damping, the 0 degree orientation the lowest. These

results are contrary to those presented by Schultz and Tsai (17), where the 45 degree

off-axis specimen had the highest damping. This table also shows that the damping loss

factors for composite systems have values typically an order of magnitude or greater than

those of the metallic systems, indicating the inhcrent damping characteristic- of the material.

Table 1: Comparison of Damping Loss Factors of Various Materials Systems (after Friend,
Poe-ch, and Leslie(9))

Damping Modulus
Material Orientation Frequency Loss Factor x 10-6psi

(Hz) (x 10-4 ) (GPa)

2024 A] 10 (69.0

6061 Al 4000 55.0 10 (69.0)

Mild Steel 4000 i7.0 28 (193.1)

1020 Steel 38.0 29 (200.0)

Scotch ply 1002 0 4200 70.0 5.1 (35.2)
F. glass/epoxy 9100 90.0 5.1 (35.2)

SP-272 0 4000 67.0 26.8 (184.8)Boron/Epoxy

0/90 4400 57.0 18.3 (126.3)

90 4200 330.0 3.2 (21.2)
2002M 0 4000 157.0 27.4 (188.9)

Graphite/Epoxy
22.5 4000 164.0 4.7 (32.4)

45 3800 186.0 1.8 (12.4)

90 4000 319.0 1.0 (6.8)

(0/22.5/45/90) 4000 201.0 10.0 (69.0)
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Adams and Short (18) investigated the effect of fiber diameter on the vibration

damping of glass/polyester composites. They fabricated beams using glass fibers having

diameters of 10, 20, 30, and 50 p.m. As the fiber diameter is decreased, the ratio of the

surface area to volume increases. Thus, for a given fiber volume fraction of the laminate,

the contribution to the damping from the interfacial bond between the resin and the fiber

increases. This increase is not only the result of the increase in the bond area but is also

attributed by Adams and Short (18) to the increase in the stress concentration in the matrix

as the fiber diameter is decreased. This increased stress concentration results in an increase

in the strain energy per unit volume of the matrix. As the fiber volume fraction was

decreased from 70% to 35%, the sensitivity of the loss factor to the surface to volume ratio

of the fibers was greater, which gives credence to the hypothesis that there is an additional

effect on the loss factor besides the increase in the surface to volume ratio. Adams' and

Short's (18) test results, shown in Fig-ure 4, indicate that the damping loss factor of the

beam increased as the fiber diameter was decreased. This shows that the fiber/matrix

interface can be a major damping mechanism in composite materis, not only due to the

bond itself but also to the stress concentrations that occur. In addition, the viscoelastic

character of the interphase region around the fiber may be providing an additive effect on

the damping for the smaller diameter fibers. Although the fiber diameter affected the

damping loss factor, it should be mentionied that the fiber diameter did not affect the storage

modulus of the material.

Adiams and Bacon (19) studied the effect of fiber orientation and laminate geometry

on the damping properties of graphite/epoxy composites as measured in flexural and

torsion tests. For the flexural tests, the material was in the form of beams. These were

clamped in the center with cylindrical steel clamps, which were subsequently attached to
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electromagnetic coils. These coils provided the necessary mechanical vibration. The

system was set to the resonance of the beam and then stopped. The beam was then set into

free vibration and the resulting decay in amplitude of oscillation measured. These authors'

results of the testing of 0 degree graphite/epoxy revealed that, since there. was only minimal

damping, aerodynamic damping played a significant role in the measured values of the

damping loss factors for the beam. Because of this, Adams and Bacon (19) tested their

remaining beams in a vacuum. They also suggested that, since aerodynamic damping can

significantly contribute to the apparent damping provided by the material, other

investigators who did not consider this additional contribution may have spurious results.

The specimens used in this investigation were approximately 0.5 x 0.1 x 9.0 in.

(12.7 x 2.5 x 229 mm ). Adams and Bacon (19) made theoretical predictions for the

damping loss factor of the material, based on the strain energy of the material associated

with the stresses in the specimen geometry directions. Their predictions of the material's

strain energy dissipation are dependent on the compliance coefficients and the stresses

induced in the material. Their theory indicates that the damping is a nonlinear function of

stress, thereby having no closed form solution and requiring numerical evaluation.

In the flexural mode, Adams and Bacon (19) found a strong dependence of the

damping loss factor on the laminate orientation. They found a peak in the damping loss

factor at +35 degrees for the off-axis specimen tested in vacuum. This is a result of a large

energy dissipation in shear. The damping-associated stresses in the fiber direction become

negligible when fiber angles are greater than 10 degrees. In the case of angle-ply

laminates, a maximum in the specific damping factor was found to be approximately 45

degrees. Graphs of the two results are shown in Figures 5 and 6. In all cases, the

experimental values are greater than the theoretical values, although they follow the trends
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Figure 5 Variation of flexural modulus, E-, and damping loss factor, rTf, of unidirectional
high tensile strength graphite fibers embedded in DX210 epoxy resir with fiber
volume fraction of 50%, as a function of angle that the fibers make with the
longitudinal axis of the beam tested in flexure with a maximum bending moment
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high tensile strength graphite fibers embedded in DX210 epoxy resin with fiber
volume fraction of 50%, as a function of angle that the fibers make with the
longitudinal axis of the beam tested in flexure with a maximum bending moment
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quite closely.

When an off-axis material configuration is subjected to bending, the material also

experiences a twist, since the material is unbalanced. The magnitude of the twist varies

with fiber orientation, monitonically increasing from 00, reaching a maximum at a fiber

orientation of approximately 30'. For an angle-ply laminate, there is no bending-twisting

coupling. The variation in the fiber orientation at which the loss factor reaches a maximum

for the off-axis and angle-ply laminates would therefore be expected to be different.

Another point not indicated specifically in the figures, but evident in additional test

results, is that the damping was amplitude dependent. Since the specimens were tested in a

vacuum, aerodynamic damping, which has been previously shown to contribute

significantly to the damping of a material, should not have arisen. However, this increase

in damping with increasing amplitude of vibration could have arisen due to the increase in

stress discontinuity at the clamped section of the beam or from the frictional losses at the

clamped region. In both cases, the energy dissipation would have probably been in the

form of localized heating of the specimen or from viscoelastic effects in the resin at these

higher stress levels.

When cross-ply laminates were tested, it was found that the orientation of the outer

plies had a pronounced effect on the damping of the laminate. As the beam stiffness was

increased, the damping loss factor of the material decreased. The damping loss factor

values that were obtained ranged from 13xI0-4 for the beam with a stiffness of 14x10 6 psi

(96.5 GPa) to a minimal value of 10x10 4 for a beam with a stiffness of approximately
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25x106 psi (172.4 GPa). Since the damping loss factor is so low for the cross-ply

arrangement, it would not be a satisfactory material for structural damping in flexure. In

addition to varying the beam stiffness in their tests, by using beams with identical

dimensions Adams and Bacon(19) also changed ,he resonant frequency at which the loss

factors were calculated.

In one of the specimens tested, Adams and Bacon (19) obtained a damping loss factor

that was approximately six times higher than what they predicted theoretically. Upon

examining the specimen, they found that it contained an interlarninar crack running

approximately 1 in. (25.4 mm) along its length. This shows that the damping of the

composite material is very dependent on the quality of the test specimen. Whereas the

structure should be as free of defects as possible to maximize the mechanical properties,

;,i-,-rf,-etc;tn pre ent in the material will enhance the damping.

For investigations on the material loss factor, then, it is therefore imperative that the

quality of the material be detem-ined; this will ensure that the losses determined are due to

the material and not imperfections in the material. The energy dissipation which can occur

in composites having internal defects results from dissipation of heat from the friction

occurring at the imperfection sites. The heat generated at these material imperfections, such

as cracks in the fibers and matrix and delaminations, can be readily detected at the surface

of the composite. This characteristic has led to the development of a nondestructive

evaluation technique called thermography(20,21,22) which assesses the material quality by

monitoring thermal patterns on the surface of the specimen which has been either passively

heated or actively heated by vibration. These defects are beneficial in that they enhance the
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mechanical vibration damping, but are obviously deleterious in that they reduce the

mechanical properties of the structure. Parker (23) reported that the heat generated will

adversely affect the properties of the composites due to the possible degradation of the

matrix when nonconductive fibers such as glass are used, but may n-ot be a problem if

conductive fibers such as graphite are used.

Adams and coworkers (24) experimentally determined the damping loss factor of

various composite systems in angle-ply, off-axis and quasi-isotropic configurations. They

attributed the vibration damping achieved in composites to the interfacial damping present

by virtue of the laminated structure of the material. They reported that vibration damping

limits the amplitude of the resonant vibration and, therefore, limits the radiated noise and

onset of fatigue degradation. The materials used in their investigation were graphite and

glass fibers embedded in an epoxy matrix. The specimens tested were beams which were

clamped at their centers and vibrated using a coil/magnet pair at the material's resonant

frequencies in a free-free flexural mode. The results obtained on the effect of vibration

amplitude on the damping indicated that increasing the stress level from very low levels to

10% of the failure load did not affect the resultant damping. This is contrary to the results

shown earlier by Adams and Bacon (19), who found that the damping loss factor increased

with increasing cyclic bending moment. It should also be noted that Adams and

coworkers (24) did not explicitly state that the tests were conducted in vacuum. If the

specimens were tested in air, then the nondependence of loss factor on the amplitude of

vibration would be contrary to the earlier work of Adams and Bacon (19).

Adams and coworkers (24) investigated the effect of specimen dimensions on the
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damping loss factor of the graphite/epoxy specimens. The aspect ratio of the beams, 1/h,

was varied from 90 to 53. It was experimentally shown that as the aspect ratio was

decreased in the range indicated above, the damping loss factor increased by approximately

25%. Adams and coworkers (24) attributed the increase in loss factor to the increase in the

shear damping contribution to the damping of the beam in flexure. They theoretically

indicate that the damping in longitudinal shear is (if the order of 50 to 100 times larger than

the tension or compression component. They also indicate that although the amount of

energy stored in shear is small, the large damping that is attributable to the shear component

can substantially contribute to the total predicted value of the damping loss factor in flexure.

Another factor that changed as the aspect ratio was varied was the natural frequency of

vibration. As the aspect ratio increased, the frequency should have decreased. The direct

effect of aspect ratio on the damping loss factor was therefore not measured explicitly in the

above tests.

For the angle ply specimens, Adams and coworkers (24) showed a maximum in the

damping loss factor occurring at appruxirmately 45 degrees with a vaiue of approximately

146x10-4 and decreasing slightly as the angle is increased to 90 degrees to a value of

approximately 108x1I0-. It was also mentioned that the off-axis specimen had a maximum

in its damping loss factor at an angle of 35 degrees, which is probably the result of the

stress couplings as was previously discussed. The final configuration tested was a

(0 /-60 /60 ), quasi-isotropic laminate. Testing revealed a nonsymmetric relation of damping

capacity vs. angle as measured from the 0 degree direction, which is similar to the earlier

findings o Schultz and Tsai (17). The minus angle side had a peak in the damping loss

factor at 4:, degrees with a value of approximately 108 x 10-4, whereas the plus angle side

had its peak in the damping loss factor at 90 degrees with a value of approximately 93 x10 4
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(see Figure 7). Also given in Figure 6 is the flexural modulus as a function of outer ply

orientation. It can be seen that the flexural modulus, like the damping loss factor, is

nonsymmetric about the 0 degree orientation.

Figure 7 shows that the loss factor varies inversely with the flexural stiffness. In

general, as the stiffness of the material is increased, the loss factor is decreased. However,

this direct observation is still obscured by the fact that the frequency of test for the various

orientations must have been different since the natural frequencies of the material vary with

stiffness also.

Paxson (25) investigated the damping capacity of boron fiber reinforced epoxy. He

used the double cantilever beam configuration previously described. In addition, he had

epoxy shoulders molded onto the upper and lower surfaces of the specimen at the center of

the beam where it was to be clamped. This alleviated any stress concentrations that may

have arisen if the specimen was clamped directly. The specimen was tested in a vacuum

chamber. The experimental apparatus was also tested for additional energy losses by

testing an aluminum beam and comparing Lhe results with the well established thcrmoelastic

model developed for determining the damping in metals developed by Zener (26). The

specimen was excited in a sine wave mode with a frequency centered near the first resonant

frequency of the beam via an electromagnetic shaker attached to the epoxy shoulders. The

specimen was also dynamically balanced to ensure that each beam had equivalent vibration

characteristics of the same maximum amplitude at the same frequency. Paxson (25) used

an optical displacement follower to measure the tip deflections during the testing. The

damping loss factor was determined using the half power band width method.
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Paxson's (25) results indicated that the (45/-45)4, specimen had the maximum

damping factor, the 90 degree specimen had values slightly lower, and the 0 degree

specimen had values approximately an order of magnitude lower than the former two.

These results, given in Table 2, show the same angular dependence demonstrated by

Adams and coworkers (24) for the graphite/epoxy composite beams.

Table 2: Effect of Fiber Orientation on the Damping Loss Factor of Boron Fiber Reinforced
Epoxy Composites in the Forced Vibration Mode(after Paxson (25)).

Fiber Storage Loss Damping
Orientation Thickness Frequency Modulus Modulus Loss Factor
(degrees) mm (in) (Hz) x 106 psi (GPa) x 106psi (GPa) (x 10-4)

0 1.96(.077) 34.33 26.5 (182.7) 6.5 (44.8) 24.8

0 1.96(.077) 135.02 23.5 (162.0) 6.3 (43.4) 27.0

0 1.96(.077) 302.40 22.5 (155.1) 8.6 (59.3) 38.3

45/-45 2.11(.083) 32.25 4.0 (27.6) 7.8 (53.8) 197.0
45/-41 . ) 106.10 3.7 (25.5) 9.5 (65.5) 159.
45/-45 2.11.(083) 153.25 3.7 (25.5) 10.5 (72.4) 283.0

90 1.93(.076) 29.25 3.9 (26.9) 5.5 (37.9) 144.0
90 1.93(.076) 53.20 4.0 (27.6) 6.3 (43.4) 159.0

90 1.93(.076) 136.25 2.9 (20.0) 8.3 (57.2) 290.0

90 1.93(.076) 262.00 2.8 (19.3) 8.1 (55.9) 290.0

Paxson (25) also tested the material in a free-free vibration mode. The specimen was

suspended from a rigid support structure with no. 50-sized cotton thread and attached to the

beam at its node points for the first mode of vibration for a free-free beam. The purpose of

the threads was to decouple the specimen from the support structure, alleviating any

transfer of energy from the beam specimen to the support apparatus. The beam was excited

at one end and the displacement of the other end measured by a noncontact displacement

follower. The damping loss factor was determined by the amplitude decay method using

0I
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equation 2.

in this mode of vibration, again the (45/-45)4, beam had the highest damping factor,

the 90 degree material had values slightly lower, and the 0 degree material had values

approximately an order of magnitude lower than the former two. The results are shown in

Table 3. It should also be noted that the frequencies of testing for these specimens were

not equivalent.

Table 3: Experimental Results on the Effect of Fiber Orientation or. the Damping Loss
Factor of Boron Fiber Reinforced Epoxy Composites in Free-Free Vibration
(after Paxson (25)).

Fiber T. Damping
Orientation Thickness Frequency Loss Factor
(degrees) in. (mm) (Hz) (x 10-4)

0 .077 (1.96) 34.2 11.7
0 .077 (1.96) 140.1 12.3

0 .077 (1.96) 300.0 13.5

45/-45 .083 (2.11) 32.1 219.0
45/-45 .083 (2.11) 106.4 217.0

45/-45 .083 (2.11) 155.0 199.0

45/-45 .083 (2.11) 313.0 239.0

90 .076 (1.93) 29.1 154.0

90 .076 (1.93) 52.6 165.0

90 .076 (1.93) 134.2 195.0
90 .076 (1.93) 262.8 210.0

Comparing the two experimentai procedures used in his testing, Paxson (25)

suggested that the damping loss factor determined using the forced vibration technique is

generally higher than that determined from the free-free method. This difference is due
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primarily to the different states of stress in each of the specimens. In tie forced vibration

technique, the maximum bending moment and maximum shear stress occur at the root of

the specimen. In the free-free case, the maximum bending moment occurs where there is

essentially no shear. In the forced vibration technique, then, energy is dissipated not only

by cyclic tensile and compressive stresses, but also by cyclic shear stresses, which

therefore results in a high loss factor.

Gibson and Plunkett (27) investigated the vibration damping characteristics of glass

fiber reinforced composite materials. They investigated the effect of geometry, vibration

frequency and amplitude on the damping of laminated beams. They subjected

unidirectional and (0/90) crossply composite beams to flexural vibration. The specimens

were tested using the double cantilever beam configuration, having epoxy shoulders

molded to the center of the specimen, similar to that arrangement described by Paxson (25).

This allowed the specimen to be clamped without introducing damage and reduced stress

concentrations by shifting the clamping surface away from the region of high bending

strain, thereby reducing the energy dissipation that may occur at the mounting surface.

Each beam specimen was a 51 ply laminate with dimensions 35.9 x 1.0 x 0.5 in.

(91.2 x 2.54 x 1.275 cm.). These beams were excited with an electromagnetic shaker

attached to the epoxy shoulders. The bending strain of the material was monitored with a

strain gage mounted on the specimen surface. The specimen acceleration was measured

using an accelerometer mounted to the specimen support clamp. The acceleration Lissajous

patterns were used to determine the damping loss factor of the composite. Gibson and

Plunkett (27) point out that this type of analysis is valid only for small amplitude

vibrations. For large amplitude vibrations, the shear force and the bending moment had to

be determined from the characteristic function describing the mode shape [Bishop and
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Johnson (28)] and the measured strain at a particular location on the beam. Because this

method is much more complex, requiring visual interpretation of the acceleration Lissajous

patterns, and has been abandoned for other techniques, it will not be elaborated upon

further.

The beams were to be tested at large amplitudes. Since aerodynamic damping on the

composite has been shown to be significant at high amplitude vibration, the test on the

composite specimens was performed in a vacuum. For small amplitude vibration with the

cross-ply specimen oriented in the transverse direction, damping was primarily from the 90

degree plies, with little contribution from the 0 degree plies. This is because the resin,

which has the highest damping, is subjected to the highest strain in the 90 degree plies.

When thick beams in a cross-ply configuration are subjected to large amplituCe

vibration, the 90 degree plies near the surfaces of the beam will reach their failure stress,

resulting in cracks in the material. At this load, however, the 0 degree plies have not yet

failed and the beam can therefore still carry load. The mechanical degradation of the beam

is thus minimal, since the 0 degree plies are the primary load carrying components.

However, due to the material discontinuities as a result of the material damage, there is a

strain concentration in the matrix. Although the failure strain of the flexural specimens was

shown to be nearly the tensile failure strain when large amplitudes are used, the damping

increased by 20% at failure, indicating the positive effect that damage and defects have on

the damping in composites. Gibson and Plunkett (27) obtained experimental values for the

damping loss factor of 20x10 4 for the initial test of the specific specimen to values as high

as 100xl0"4 for the third test of the same specimen. This result was also shown to occur in
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the unidirectional 90 degree specimens as long as the failure strain of the material was not

exceeded. This series of tests indicated that a damping loss factor variation is a more

sensitive measure of damage than a stiffness variation.

Maymon and coworkers (29) presented experimental results on the effect of moisture

and elevated temperature on the vibration damping characteristics of graphite/epoxy

composites. The specimens were tested in a cantilever beam configuration both at room

temperature dry and at 200' F (93°C) in a moisture saturated condition. The specimens

were approximately 1 x 8 x 0.065 in.(25.4 x 203 x 1.65 mm) with a fiber volume

fraction of 62% and both longitudinal and cross-ply fiber orientations. The specimens

were subjected to various conditionings prior to vibration damping testing. First the

specimens were dried for six days at 200" F (93'C), then tested in the flexural vibration

mode at their natural frequencies. Next, the same specimens were placed in a 200' F

(93QC) constant temperature bath for 45 days, after which they were weighed and the

vibration damping properties determined by testing in an environmental chamber at a

temperature of 20(Y F (93'C) and 70 to 80% relative humidity. After the specimens were

tested, they were weighed to determine if moisture loss occurred during testing. The

specimens were then redried at 200' F (93*C) for six days, and the dry condition vibration

damping properties were again detemfirned. The results from the conditioning indicated that

the average weight gain for the hot/wet conditions was approximately 1.53% for all

configurations tested. After testing in the hot/wet condition, the average weight loss

experienced by the specimens was 0.078%. After redrying, the average weight loss of the

specimens from their original weight was approximately 0.05 1%.



43

The vibration damping results are presented in Table 4. The testing of the specimens

in such environmental conditions is relevant to the majority of composite structural

applications, since composites are normally subjected to various humidity and temperature

conditions. Maymon and coworkers (29) had assumed that the vibration damping

experienced by the specimens would increase in the hot wet condition due to the

plasticizing of the epoxy resin in this environment. However, the result; showed that

moisture increases the damping loss factor in specimens only where the matrix properties

are less dominant. In the (+ 45) and the (0/45 /90/-45). specimens, where the matrix is

strained to a higher level, the damping loss factor is actually decreased. These results show

that the stress state in the material affects damping in the material. Moisture causes

swelling in the matrix r-aterial. When a conditioned specimen is subjected to the same

amplitude of vibration as an unconditioned specimen, the stress states in the material are

different, which was shown to affect the vibration damping of the material. After redrying,

these authors showed that the specimens' vibration damping loss factors were the same or

in general greater than those obtained in the initial dry test condition. Examination of these

specimens using both ultrasonic C-scan, and sectioning and subsequent examination with a

scanning electron microscope revealed that microci acks had developed in the specimen.

Such cracks enhance the damping characteristics of the test specimens (19). These results

show the possibilities for using the damping loss factor to measure the damage state of a

composite specimen.

Gibson and Plunkett (30) investigated the effect of amplitude and frequency on the

vibration damping of composite materials subjected to flexural vibration. The specimens

were subjected to a forced vibration so that a particular frequency and amplitude could be

input and the direct effects on damping could be observed. To measure damping, the
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Table 4: Experimentally Determined Damping Loss Factor as a Function of Temperature
and Moisture Environmental Conditioning (after Maymon and coworkers (29)).

Material Average Effective Average Damping
Orientation Damping Modulus Loss Factor
(degrees) x 106 psi (GPa) (x 10 -4)

Dry Wet Redried Dry Wet Redred
77 0 F 2000 F 77 0 F 770 F 2000 F 770 F

0 17.0 17.1 16.4 92 120 140
(117.2) (117.9) (113.1)

45/-45 3.3 2.7 3.2 210 160 240

(22.8) (18.6) (22.1)

(0/45 /90/-45)s 10.0 9.9 9.8 130 75 120
1 (69.0) (68.3) (67.6) 1 1

resonant dwell technique was used. In this technique, the specimen is set into resonance

with an electromagnetic shaker. The base acceleration and the strain on the surface

measured by a foil resistance strain gage were used as inputs to an oscilloscope. Ine

damping was then determined from the Lissajous patterns on the oscilloscope trace. To

ensure that losses that were measured by the experimental procedure were from the

specimen and not the result of the experimental setup, Gibson and Plunkett (30) first used

2024 T-351 aluminum as a calibration specimen and then compared their result to the

theoretical prediction of the damping using the Zener thermoelastic theory (26). According

to this theory, the loss factor for a beam vibrating in flexure is given by

(x2ET _ )_c_
C (I + 0 t2) (6)

where (x is the coefficient of thenrmal expansion, E the Young's modulus, T the absolute

temperature, C the heat capacity, (o the angular frequency, arid 't the relaxation time for heat
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flow across a beam of rectangular cross section. The value of T is determined as

h2C
27t K (7)

where h is the beam thickness, and K is the thermal conductivity of the beam material.

The specimens were tested in the double cantilever beam configuration, clamped at its

center to a vibration table. The vibration amplitude was controlled by varying the amplitude

of vibration of the table. The resonant frequency of the specimens was varied by

removing material from the ends of the specimens after results were obtained for the

particular frequency. The difference in the damping loss factor between the experimental

results and the theoretical predictions was less than 5% for aluminum, indicating that the

expelifientai setup prevldCdU -a i-CIu4tfte rieasture of the •Itr_ iai los1- fLI.t , R'suit orN 1"i-i

variation with amplitude for the aluminum calibration sample showed that, under a vacuum

of 1 mm Hg, the loss factor did not vaty with amplitude. However, at atmospheric

pressure, as the amplitude of vibration increased, the loss factor also increased.

For the cross-ply E-glass reinforced epoxy composite samples (3-M Scotchply),

Gibson and Plunkett (30) show that initial increases in the amplitude of, - " ation had little

effect on the resultant material damping. As the amplitude of vibration increased to the

point where permanent degradation occurred in the material, the damping loss factor

showed a permanent increase. This result matches the work of Adams and Bacon (19)

who showed that as damage in the material increases, damping also increases. When the

amplitude of vibration was kept below the level at which permanent damage occurred,
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damping increased as the frequency increased. The magnitude of the increase was

approximately a factor of 2 from a value of 25x 104 at a frequency of approximately 38 Hz

to a value of 42x 104 at a frequency of approximately 450 Hz. This result conflicts with

the earlier results of Schultz and Tsai (17), who showed that initial increases in frequency

caused a decrease in the damping loss factor of beams in the quasi-isotropic configuration.

Since the experimental apparatus in the work of Gibson and Plunkett (30) was carefully

evaluated to insure that measurements of the damping obtained would be of the material and

not the apparatus, it is assumed that the results of Schultz and Tsai (17) may have been a

function of the experimental apparatus and that the results of Gibson and Plunkett (30) are

more accurate. If this is correct, this would indicate that if one is concerned with

determining the damping experienced with a particular structure, then the measurement of

the damping from the first mode of vibration should result in an expected lower bound.

This assumption, however, needs further validation.

Pulgrano and Miner (31) conducted an experimental program to determine the loss

factor of Kevlar, glass, and graphite composites with unidirectional and fabric

configurations. In addition, the effect of resin was investigated by fabricating specimens

using the above fibers with epoxy, polyester, and vinylester resin systems. These authors

tested the samples in the double cantilever beam configuration. They determined the loss

factor of the specimens using the logarithmic decay method.

The results from the investigation, given in Table 5, indicate that the Kevlar

composite exhibited the highest loss factor of the three fiber systems tested. In addition,

the loss factor for the Kevlar composite in both the unidirectional and fabric configurations
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Table 5: Damping loss factor determiination of graphite, Kevlar and glass composites in the
double cantilever beam configuration using the log decrement technique with an initial
maximum bending stress of 1000 psi. (after Pulgrano and Miner (30)).

Material Configuration Frequency Loss Factor
(Hz.) (x 10-4)

Kevlar 49/Epon 826 Unidirectional 87 130
Epoxy 597 260

Kevlar 49/Epon 826 Tabric 50 140
Epoxy Fabric 340 160

S-Glass/Epon 826 Epoxy Unidirectional 65 18

438 28
E-Glass/Epon 826 Epoxy Fabric 41 46

Fabric 340 59
AS Graphite/Epon 826 Unidirectional 109 13

Epoxy
AS Graphite/Epon 826 Fabric 53 33

Epoxy Fabric 353 43

Kevlar 49 + AS Graphite Fabric 49 110
Epon 826 Epoxy Fabric 328 120

Kevlar 49/Polyester Fabric 51 140

1 Fabric 338 150
Kevlar 49/Polyester Fabric (_±450) 46 190

Fabric (+45') 318 170
Kevlar 49/Vinylester Fabric 60 140

Fabric 375 240
Kevlar 49/Vinylester Fabric (.+450) 52 160

1 Fabric L(450) 334 150

were approximately equivalent. This result is interesting from two aspects. First, the

fabric composite has a much lower modulus than the unidirectional composite,

approximately 50% lower for the same fiber volume fraction. The fabric composite

samples fabricated were thicker than the unidirectional samples, as given by the number of

plies of material used in both cases, although the measured thicknesses were not

specifically given. Although the samples were subjected to the same initial outer fiber
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stress, the authors did not report whether the initial amplitude of vibration was die same in

both cases. Aerodynamic damping may therefore have been a larger contnibuting factor in

one of the configurations. Second, in the fabric configuration, to achieve the same outer

ply stress, the stress distribution in the fibers and resin will be different than in the

unidirectional material. In addition, the amount of material available to dissipate the energy

is greater in the fabric specimen than in the unidirectional specimen. In regard to the effect

of resin on the loss factor for Kevlar fiber composites, the results of Pulgrano and Miner

(31) would indicate that vinylester, polyester and epoxy have loss factor characteristics that

differ little in the composite configuration.

Shimizu (32) conducted an experimental program to determine the effect of fiber

volume fraction, quantity of flexibilizer, effect of foam matrix, and ply angles of angle-ply
lqn'-inntes cn the dirnnpig of carbon fiber reinforced composites. Hie indicated that some

contradictory statements have been made regarding the damping of carbon fiber composite

materials. First, it has been reported that damping in these materials is due mainly to the

resin and the fiber matrix interface with little contribution from the fibers. The contribution

of the fiber resin interface to the damping in composites has been experinmentally proven

since the experimentally determined damping loss factor has been shown to be several

times larger than the rule of mixtures prediction. This shows that the interface has a

significant contribution to the damping of the composite. If, however, one considers the

temperature and frequency dependence of the composite, one can see that the damping of

the carbon fiber composite follows that which is expected of the matrix [Adams and Bacon

(33) and Yoshida (34)]. 'Ibis indicates that the resin properties, not the interface, are the

dominant factor in determining the vibration damping as a function of frequency and

temperature. Shimizu (32) reported that he could find no satisfying explanation as to why
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there is no apparent temperature and frequency dependence on the fiber resin interface.

Shimizu (32) used high tensile strength carbon fiber made by Toray Corp. called

"Torayca T-300." Measurements of the damping loss factor were obtdined using a Bruel

and Kjaer type complex modulus apparatus. The loss factor was determined using the half

power bandwidth method that has been previously described. In this technique, using this

equipment, the value of the damping loss factor depends on the amplitude of vibration,

making this experimental procedure applicable for small amplitude vibrations only. The

specimens were tested in flexure in a cantilever beam configuration.

Shimizu (32) showed that adding a flexibilizer to the matrix increases the damping

loss facior of Lhe system. With the addition of 25 parts of flexibilizer, the !oss factor

increased by as much as a factor of four for a (45/-45) laminate to as little as a factor of two

for the 0 degree laminate. The damping loss factor for the resin itself also increased by

approximately a factor of four when tested without the addition of fibers. The experimental

values for the loss factor of the flexibilized resin is much higher than that predicted using

the modified rule of mixtures approach by Hashin (35), the details of which are discussed

later.

Shimizu (32) showed that by modifying the Hashin equation, the theoretical

predictions could be made to provide an excellent fit to zhe experimental data. The

necessary change was use of a different value of the resin's storage modulus in the Hashin

equation (35)
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1rnrvimrl= Ef Vf

ErrE (I -f) (8)

where 71 is the flexural loss factor, 1im is the loss factor of the matrix, Ef and En, are the real

parts of the complex modulus of the fiber and resin respectively aid Vf is the fiber volume

fraction. Shimizu (32) indicated that the siorage modulus of the matrix in the composite is

larger than that of the matrix alone due to the restriction provided by the fibers to the

movement of the molecular chains of the resin. In this work Shimizu (32) showed the

storage modulus of the matrix in the composite configuration to be 16 times that of the

matrix itself.

Shimizu (32) tested the effect of foaming the matrix on the damping of the composite.

Increasing the volume of the composite by as much as 50% had the effect of increasing the

damping loss factor only by about a factor of two. This type of enhancement scheme to

improve the damping of structural composites is therefore not a viable one. In addition,

there is a variation in the resonant frequencies of these systems, which may also have

affected the damping results.

For each of the angle ply configurations tested, the loss factor as a function of

frequency had a minimum between 100 and 10000 Hz. The graph oif loss factor vs.

frequency for each angle ply orientation was concave up, with an initial decrease in loss

factor to a minimum, followed by an increase as the frequency was increased. This result

appears to support the earlier work of Schuli- and Tsai (17) and to contradict the work of

Gibson and Plunketz (30). What is probably occurring here is that the flexibilizer and
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foams that are being used exhibit maximum damping at different frequencies as was

previously discussed by Kurtze and Mechel (12). This may be the result of a variation in

the fiber/matrix interface characteristics, as well as the frequency effect of the loss factor of

these additives. This therefore shows that if various constituents are added to the

composite, the effect of frequency on damping must be experimentally investigated to

determine the frequency dependence on the loss factor of the particular system. The

angle-ply lprminates can be listed in order of decreasing loss factor in the following manner:

+45 > +60 > +75 > 90 > +30 > +15 > +0. Also, the damping loss factor increases

approximately eightfold from the 0 to the45. The result of the maximum in the loss factor

occurring at the 45 degree orientation again matches the results of other previously

mentioned investigators.

Plunkett (36) has investigated the effect of damage on the damping loss factor of

cross-ply composites. The type of damage used in the investigation was microcracks in the

transverse plies of the cross-ply composite. Many investigators have shown that the matrix

material in a composite with this configuration will crack under a combination of residual

and applied stresses, so that such cracks are a common defect that is easily created (37-40).

In addition, Adams ond Bacon (19) have shown that the presence of cracks in the

composite material increases the damping loss factor of the material. Plunkett (36) used a

5 1-layer cross-ply Scotchply composite to investigate the effect of strain amplitude, and

therefore the transverse crack density, on the damping loss factor of the composite material.

The specimen was tested in the double cantilever beam configuration. As the amplitude of

vibration was increased, an increase in the damping was observed corresponding to the

development of permanent damage in the material. The crack density was easily correlated

with the loss factor. Plunkett (36) also showed that after a particular level of damage
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corresponding to the strain level of 2%, there was no increase in the loss factor for the

system. This damage level corresponds to the minimum spacing of the cracks in the

transverse plies of the cross-ply composite. The increase in the damping loss factor from

the undamaged to the damaged specimen having the minimum crack spacing was

approximately a factor of 3. Although he measured the increase in damping

experimentally, Plunkett (36) indicated that there is no physical mechanism to explain why

the magnitude of the dissipation is so large.

Macander and Crane (5) conducted an experimental program to obtain infonnation on

the vibration damping of advanced composite systems using monolithic composite beams.

This testing differed from that described previously by the size of the beams tested. In this

study, the beam thicknesses ranged from 1.25 to 1.94 in. (31.8 to 49.2 mm),

approximately an order of magnitude greater than bIanms U.U. L....e ther.. sUJL-"

previously discussed. The beams were approximately 39.625 x 4.375 in.

(100.6 x ! 1.1 cm) in length and width, respectively.

The experimental technique used in this investigation was also different from the

other terhniques previously mentioned. Here, the beams were excited with an impulse.

The rate at which the excitation acceleration decays is a measur'e of the camping of the

structure. The vibration of the structure can be approximated by a decaying sinusoid. The

damping is then related to the time constant of vibration decay. When the specimen is set

into vibration, the resulting mode has associated with it a particular reverberation tine. 'The

reverberation time is the time required for the vibration of the structure at a particular

frequency to reach one thousandth of some initial value, i.e., 60 dB referred to some initial
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value. The loss factor is then determined as being inversely proportional to this measured

time at the particular frequency. Specifically, the decaying filtered electronic signal of the

response of the structure at a particular modal frequency is compared with a signal whose

reverberation time is known, thus determining the reverberation time of the specimen.

The experimental investigation of Macander and Crane (5) was designed to determine

effect of fiber orientation, fiber type and material hybridization on the loss factor of thick

[greater than 1.5 in. (38 mm)] composite beams. The four configurations tested were 1) a

graphite/epoxy beam with fiber orientation (0 /4 5/-45 )225T, 2) a Kevlar/epoxy beam with

fiber orientation (0 /9 0 )228T, 3) a graphite/glass/graphite epoxy beam with the graphite

layers having fiber orientations of (0/9 0)42T and the glass/epoxy having fiber orientation

(0 /9 0 )10sr, and 4) a hybridization of Kevlar/graphite/Kevlar epoxy with the Kevlar layers

having fibr, orientation of (')21T and thc grapht.it,/epoxy having fiber orientations of

(0/4 5/-4 5)200T. In addition to the composite beams, a brass beam 1.5 in. (38.1 mm) thick

was also tested to provide a reference for comparison with the composite results, since it

was unknown if a size effect on the loss factor would be prevalent. The beams were

constructed using the above combination of materials so that they would have the same

bending stiffness as a 1.5 in. (38.1 mm) thick brass beam.

The results, given in Figure 8, indicate that all of the composite configurations tested

have a loss factor that is at least an order of magnitude greater than the brass beam over the

frequency range of 200 to 20000 Hz. The loss factor for the graphite beam is in the range

of 20x1O-4 to 100x10-4 and is comparable to the graphite/glass/graphite hybrid beam.

These values are similar to those founu ,,i the literature. The graphite/Kevlar/ graphite
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Figure 8 Comparison of damping loss factors for thick section composite and brass beams
with nominal dimensions 39 x 4 in (99 x 10 cm), graphite/epoxy 1.46 in (37mm)
thick (gr), graphite/giass/graphite/epoxy 1.93 in (49 mm) thick (gc/gl/gr),
Kevlar/epoxy 1.26 (32 mm) thick (K), Kevlar/graphite/Kevlar/epoxy 1.26 in (32
mm) thick (K/gr/K), and brass 2.01 in (51 mm) thick (br) tested in flexure
(after Macander and Crane (5)).
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hybrid beam had a less factor that was slightly greater than the previous two beams with a

loss factor ranging from 70x 104 to 230x 104. The Kevlar beam had the highest loss factor

with minimal variance over the frequency range tested; its loss factor ranged from 120x1o-4

to 230x10-4. It should be noted that the brass beam results were approximately an order of

magnitude lower than results reported for steel and aluminum beams.

The results of this testing showed no specific trends in regard to the effect of

frequency on the loss factor, in contrast to the earlier results of Schultz and Tsai (13) which

indicated that the loss factor increased with increasing frequency in a coatinuous manner.

The results shown in Figure 8 show a general trend of increased loss fact3r with increasing

frequency, but not in the same smooth continuous manner. One possible explanation for

this is that various modes of vibration were investigated as opposed to utilizing the first

resonant frequency only.

Gibson and coworkers (41) have developed a new technique for testing the vibration

damping characteristics of composite systems. The improvements in this technique are a

result of the improved electronic systems available for data acquisition. In addition,

measurements of di&placement can be improved by replacing the previously used strain

gages with a noncontacting proximity transducer. The apparatus used by Gibson and

coworkers (41) was the Kaman KD-2310-3U eddy current displacement measurement

system. This apparatus was used to measure the resonant amplitude ratio for the

determination of the loss factor. 't was shown earlier that the damping of a beam can be

determined by measuring the base and tip displacement amplitudes when the beam is

subjected to vibrations at its fundamental frequency in a double cantilever beam
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configuration. An analysis was presented where the damping loss factor is derived from

the predicted tip displacement of the beam. This technique was used in previously

described investigations. The problem with thi- experimental technique is that the

monitoring probe cannot be placed at the tip of the beam due to physical constraints. An

analytical solution was derived by Yau (42) where the displacement of the beam at any

locatioa can be predicted. The iesults of the analysis give the loss factor in flexure as

Cr X0 a(0)

'1= 2
Pr=(L) (4 a(Xo) (9)

where Cr ,and pr are given by

4 (cos •L + cosh ?_ L)
Cr = X,1 (sin krL *cosh 4L - coskrL * sinhkL (10)

(Pr(X) = cosb),,x -- cos.rx .- or(sIah~x - sin2rx) (11)

(pAo4 4

E(12)

sin'AL *cosh-kL + cosý,L;; sinhrIhL
O r sinPX L + sinhO .L (13)

an L = specimfen length

co, = angular resonant frequency of the rth mode

A = cross sectiona, area of heiam

I = area moment of inertia of specimen cross section

p = density of the beam

x = distance . long the beami from :he base

X = locatior -" :rain gages

a(Xo) = base acceleration amplitude of beaun
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a(X0 ) - displacement amplitude at location of probe

All of the above values ,re measured in the experimental apparatus previously described.

To use the eddy current probe for the nonconductive composite specimens, aluminum

foil targets had to be bonded to the ends of the specimen. These targets constitute only

0.08% of the total specimen weight and therefore add only minimally to specimen

damping. The previously used accelerometers could substantially affect the measured

damping by adding weight to the specimen at a specific location. The accelerometer would

also affect the mode shape of the composite beam, thereby further complicating the

measurement of the composite damping loss factor. An alternative technique, which d3es

not add to the weight of the specimen, is use of an electro-optic follower. The cost of this

equipmcnt, howcvcr, is wcll in cxccss of the cost of thr- edd-•y cu"rert apparatus.

The specimens were clamped using square aluminum clamping blocks instead of

epoxy blocks molded onto the specimen. These removable aluminum blocks were

positioned using an alignment pin for centering the specimen. The amplitude of t.e input

oscillation was determined using an ac--dc convert.r instead of the conventional

oscilloscope. With an oscilloscope, the amplitudes are scaled from the acceleration

Lissajous patterns. The ac-dc convener has the advantage of being automa:ed, which

reduces analysis time and errors in the measurement of the input amplitude caused by errors

in measuring the Lissajous patterns of the oscilloscope traces.

Gibson and coworkers (41) present an error analysis of the new and old techniques.
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The new technique corrects for the displacement of the probe at its actual location instead of

assuming that the displacement measured is at the tip, reducing errors associated with

locating the probe at a specific distance from the specimen tip and then assuming that the

probe is located near a nodal point of the displacement. Their results then showed that the

new technique is less susceptible to measurement errors for the calculation of the loss factor

than the original technique. They also found that the results using the aluminum blocks

more closely matched the damping provided by the specimen itself. This was determined

by testing the material first with the aluminum blocks, then replacing the aluminum block

with a polyester shoulder and repeating the test. Uring the polyester shoulder resulted in

higher damping loss factors than when the aluminum blocks were used, indicating that the

polyester blocks provide additional damping to the specimen.

Sheen (43) presented results on the damping of composite materials in a gravity-free

environment. He reported that previous research has revealed that many material physical

characteristics affect the damping of composites. He noted that -Putter and coworkers (44)

showed that temperature, humidity and ply orientation will affect damping. Adams and

Bacon (45) showed that fiber volume fraction affected the damping. Mohr and Cawley

(46) found that for angle-ply laminates, damping was slightly dependent on the stress and

frequency of the vibration. Sheen (43) therefore indicates that the test method for

determining the damping is criical for obtaining pertinent results.

Sheen's (43) experimental work included testing of (0)8 and (90)8 laminates at

various frequencies. He mounted strain gages to the center of each specimen, a nodal point

for this specific configuration, to obtain amplitude information. To vary the frequency yet
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retain the center of the specimen as a node point, each specimen was cut to shorter lengths

when a different frequency was to be tested. The damping results from this testing are

presented in Table 6. The results given in Table 6 are averages of the values obtained by

Sheen (43).

Table 6: Experimentally Determined Damping Loss Factor for Unidirectional
Graphite/Epoxy Composite Materials (after Sheen(43)).

Material Stress Damping
Orientation Frequency x 103 psi Loss Factor
(degrees) (Hz) (MPa) (x 10-4)

0 289.20 9.85 (67.9) 12.44

0 284.00 11.45(78.9 ) 10.38

0 288.20 9.51 (65.6) 12.84

0 301.10 10.62 (73.2) 10.11

0 485.84 3.85 (26.5) 12.01

0 931.50 3.12 (21.5) 9.88

U i491.70 0./o (2) i0.42

90 267.00 0.54 (3.7) 109.55

90 465.97 0.14 ( 1.0) 120.10

90 899.81 0.10 (0.7) 132.51

45/-45 17.95 5.07 (35.0) 108.33
45/-45 29.62 3.82 (26.3) 110.60
45/-45 54.16 1.85 (12.8) 119.52

45/-45 171.04 0.54 (3.7 ) 131.58

Sheen (43) used three methods to analytically determine the damping of the co,,posite

specimens. The first was the rule of mixtures approach, where the damping of the

composite is given by

'I = Vf 1f + V, Tim (14)
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where Vf and Vm are the volume fraction of the fibers and resin respectively, and 11f and 11.m

are the damping loss factors of the fibers and resin respectively. Since the damping loss

factor for the matrix is at least an order of magnitude greater than that provided by the

fibers, the loss factor of the composite can be merely approximated as

11 - VmTlm (15)

In this case, the damping loss factor of the composite is assumed to be isotropic and not to

vary as a function of fiber orientation.

The second method Sheen (43) used was developed by Hashin (35). Here, the loss

tangent for the material was found to be proportional to the ratio of the imaginary part of the

complex modulus divided by the real part. The approximation made in this analysis is that

the fibers do not contribute to the damping of the composite, with the result thai the

imaginary part of the fiber modulus is zero. With this approximation, the damping loss

factor of the composite in the fiber direction is given as

Tim

"qll= [ EfVf11

Em(1-vf)J (16)

where E, and Em are the modulus of the fiber and resin, respectively.

The third analytical technique Sheen (43) used was that developed by Adams and

Bacon (45). They take into account the energy dissipation in each cycle due to shear. The

results of this analysis establish the damping loss factor as



61

[,L12( 13 w )2
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3) dx+ Ell h - J 2 dx
a x + a x (17)

where L is the specimen length, w is the lateral deflection at a distance x along the beam, h

is the specimen thickness, Ell is the composite Young's modulus along the primary axis,

G12 is the shear modulus, and 7112 is the longitudinal shear damping loss factor.

Sheen (43) tested the effect of frequency on the composite damping. I is results

convinced him that the variations in the damping loss factor observed were due solely to the

frequency. He tested the same composite specimen at various frequencies so that any

material characteristics which could affect the damping loss factor, such as the fiber volume

fraction, width, thickness and internal nonuniformities remained constant. The specimen's

natural frequencies were varied by cutting equal lengths from each end so that the

specimen's center would correspond to a node of the vibration. The results of the testing

showed that there was little change in the damping loss factor in the frequency range of 300

to 1492 Hz for the 0 degree specimens. These results are shown in Table 6. For the 90

degree specimens however, the damping loss factor was a function of the frequency,

increasing as the frequency of oscillation increased. The same results apply to the (45/-45)

specimens. These results are also shown in Table 6. Comparing the results of the

experimental program with the theories, it was shown that the Hashin model (35) for

unidirectional composites gives results consistent with the 0 and 90 degree unidirectional

laminates tested. In the analysis that was perfonied, the damping capacity of the resin was

approximated since this information was unavailable. The validity of the models,
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therefore, still needs further verification.

Sun and coworKers (47) compared the two techniques currently used for

experimentally determining the vibration damping characteristics of composites. The first

was the forced vibration technique, where the specimen is continuously excited by an

electromagnetic shaker at random frequencies. The advantages of this technique include

easy control of the force level, the ability to control extraneous noise and nonlinearities, and

the ability to remove distortion effects. The disadvantages of this technique are that it

cannot measure the in-situ damping of actual structures and that the testing is limited to the

natural frequencies of the test specimens.

The second technique available for measuring the damping characteristics of materials

is the impulse hammer technique. In this technique, all higher modes of vibration are

excited simultaneously, resulting in the ability to determine the damping at any desired

frequency, a distinct advantage over the forced vibration technique.

In the impulse hammer technique, the input excitation and the response of the

structure to a given forcing function are experimentally determined. This is done by

defining H(f), called the transfer function, as the ratio of the Fourier transform of the

system output to the Fourier transform of the system input. From the graph of the

imaginary part of H(f) vs. f, a particular frequency is determined, at which the damping is

to be determined. From the graph of the real part of H(f) vs. f, the ratio of the frequency at

which H(f) attains its first maximum f(a) to the frequency at which 11(f) attains its first

minimum f(b) is obtained. The flexural damping loss factor is then determined as follows:
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f(a).1 2

11 ---. --Lf(b)J
[f(a)1 +LfSii +1 -

(18)

This appears to be a variation on ihe half power band width technique. The use of a

noncontact eddy current probe enables a more reliable method of determination of the

dumping of the composite. The previously used contact probe inevitably changed the

nrmlal form of vibration by virtue of the zdded mass as well as the natural frequencies of

the specimen tested. Sun and coworkers (47) were able to achieve results consistent Vrith

other investigators, a comparison of which is given in their paper. Their results are

presented in Table 7.

As can be seen in Table 7, al! of the compos:te systems have a daqmping loss factor at

least double that of ail. 1 inum. Of tht. composite systems investigated, the gass/polyester

syst :'as the highest damping. This high value can be attributed .o the high damping

-r, . d by the polyester resin compared to the Fiberite 934 epoxy resin and the

iepoxy system used for the Owens Coming hybri.d laxrinaze. In addition, there

is .v: .1 fiequency effect on loss factor for al! of (he systems investigated. The values

presented in Table 7 are similar (o those obtained in previous investigations.

Haines (10) investigated the damping properLies of graphite/epoxy composites tested

in a free-ree beam re-onanice mode subjected to forced sinusoidal excitation. His

invs.dtigation was conducted to determine the effec of resin and fiber type on the damping

loss factor. lie tested 8 ply laminat-s in the 0, 90, and (0/±45/90)s configurations for all
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Table 7: Comparison of the Damping Loss Factor for Aluminum, G!ass/Polyester,
Graphite/Epoxy, Kevlar/Epoxy, and Hybrid Composite (after Sun and coworkers(47))

Damping
Material Laminate Mode Frequency Loss FactorConfiguration No. Hz (x 10-4)

Aluminum 42 1431

-- 2 275 3.3

-- 3 771 2.5
Glass/Polyester [01 1 75 103.5

2 467 100.6

3 1296 71.9
9 0206/902]s 1 43 33.9

2 2&-7 40.8

3 794 39.0
Kevlar/ Epoxy [0] 1 56 42.0

2 354 44.4

3 976 32.1

Owens-Coming 101 4 41.9

2 277 42.2

3 773 40.5

the systems c:,n:;idercd. The specimen dimensions were 5.9 x 0.5 x 0.079 in.

(15 x 1.3 x 0.2 cm). Specimens were suspended on two fine taut threads at the

calculated nodes of the beam.

The resi- systems tested were Narmco 5213, Narmco 5208 and Fiberite 934. The

latter two systems are extensively used in both composite research and production of

composite parts. Three fiber systems were also used, Celion 3000, Celion 6000, znd

GY-70, all produced by the Celanese Corp. The first two fiber systems are conventional,
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commercially utilized fibers having a modulus of approximately 34xl06 psi (234 GPa).

The latter fiber, GY-70, is an ultrahigh modulus fiber having a tensile modulus of

approximately 74x 106 psi (510 GPa), a factor of 2 higher than that of the former two

fibers. The results from the investigation are given in Table 8. By using identical fiber

systems in various matrices, Haines (4) was able to rank the resin systems in order of

increasing damping that they provide with a particular fiber system as follows: Narnico

5213, Narmco 5208, and Fiberite 934. The fibers could likewise be rank•ed in order of

increasing damping that they provide in a particular resin system as follows: Celion 3000,

Celion 6000 and GY-70. Since the Celion 3000 and Celion 6000 fibers are identical, with

the exception of the number of fibers in each individual tow used to manufacture the

prepreg, Haines (6) was able to determine thm effect of tow size or, the damping by

experimentally detemining the damping of specimens using the two fibers in the same

resin systems. His finding showed that the saun fiber system with more fibers per tow,

Le., the Celion 6000, provides increased damping over R system with fewer fibers per tow,

the Celion 3000. This seems to contradict the earlier findings by Adams and Short (15)

who observed that as the surface to volume ratio of the fiber is increased (i.e., as the fiber

diameter is reduced) the damping is also increased. Although the same fiber is used in both

cases, the resin distribution within the tows and between tows is probably different. A

possible explanation is that the packing of the fibers for the Celion 6000 system has more

matrix between the actual tows but a more dense packing within the tows themselves, with

the result that a larger effective surface to volume ratio results. If this is the case, then

Haines's (10) results would support the findings of Adams and Short (18).

This work by Haines (10) also helps to identify a potentially high damping system.

This can be seen if the carlier results of Adams and Bacon (19) are used. Adams and
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Table 8: Experimentally Determined Damping Loss Factor for Celion 3000/5208, Celion
3000/5213, Celion 6000/5208, Celion 6000/5213, and GY 70/934 Unidirectional
Graphite/Epoxy Composites using the Free-Free Vibration Test Method(after Haines (10)).

Test Young's Damping
Material Direction Frequency Modulus Loss Factor

(degrees) (Hz) x 106 psi (GPa) (x 104)

C3000/5208 0 833 21.1 (145.5) 13.3

C3000/5213 0 881 19.7 (135.8) 9.7

C6000/5208 0 882 20.1 (138.6) 15.4

C6000/5213 0 909 19.2 (132.4) 10.5

GY70/934 0 1090 41.5 (286.1) 23.6

C3000/5208 90 673 1.8 (12.4) 251.6

C3000,'5213 90 685 1.5 (10.3) 148.2

C6000/5208 90 699 1.7 (11.7) 279.7

C6000/5213 90 700 1.5 (10.3) 160.0

GY70/934 90 437 1.0 (6.9) 325.2

C3000/5208 (0/45/-45/90) 510 6.9 (47.6) 77.4

GY70/934 (0/45/-45/90) 592 10.6 (73.1) 61.5

Bacon (19) showed that, as the system is made stiffer, the damping loss factor of the

system decreases. The GY-70/934 system tested by Haines (10) has a stiffness that is

approximately double that of the other two fiber systems investigated. The GY-70/934

system, however, had a damping loss factor that was approximately double that of the

other systems. Based on the above finding of Adams and Bacon (19), a composite system

that incorporates the Celion 6000 with the 934 resin, having a stiffness much less than the

GY-70/934, should yield a system that has superior damping to the systems shown in

Table 8.

Suarez an~d coworkers (48) presented an analysis of the random and impulse
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technique. The random technique is similar to the forced vibration technique mentioned

above, except that the specimen is excited by a random frequency response generated by

the noise source of a fast Fourier transform analyzer. The analysis still uses the transfer

function [Sun and coworkers (47)] to determine the damping via the half power band width

method. In the impulse technique the specimen is excited using an impulse from a hammer

with a force transducer attached to its head. In this mode all the frequencies of vibration are

excited simultaneously. The transfer function is again determined using the input from the

force transducer as the input function and the response is measured using the noncontact

eddy current probe. The loss factor for both techniques is also determined using the half

power band width technique, previously given in equation 3. The results from the two

techniques are similar. The impulse technique allows for low amplitude vibrations, which

enables aerodynamic damping to be minimized. Obtaining low amplitude vibrarions with

the random vibration technique is more difficult. The consequence of using the random

vibration technique, therefore, is that the aerodynamic damp* ig can contribute to the

measured damping of the specimen, as previously identified by Adams and Bacon (19).

Because of this and other considerations, the impulse technique is considered by Suarez

and coworkers (48) to be the easier of the two techniques to use experimentally.

The experimental results obtained using the impulse hammer technique were

consistent over a larger frequency range and successive number of tests, and were

consistent with proven theoretical models of metallic materials. With the impulse hammer

technique, by keeping the vibration amplitude to a minimum, frictional losses at the clamp

region of the specimen are also minimized, in addition to the above mentioned minimization

of any aerodynamic damping effects.
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The results of Suarez and coworkers (48) showed that the loss factor increases

slightly with increasing frequency. The frequency of test varied from app:oximately 39 to

1000 Hz. It should also be noted that for the aluminum specimen tested, there was an

initial increase in damping loss factor to a frequency of approximately 10 Hz followed by a

de•-rase in loss factor with frequency, asymptotically approaching 0 at frequencies greater

than 1000 Hz. For the chopped glass/polyester sample, the damping loss factor ranged

from 100xl0-4 at a frequency of approximate!y 40 Hz to a value of 120xl 04 at a frequency

of approximately 1575 Hz. For the graphite/epoxy samples, the damping loss factor

ranged from 25x10 4 at a frequency of 50 Hz to a value of approximately 30x10 4 at a

frequency of approximately 950 Hz. Suarez and coworkers (48) also present results of the

damping loss factor for the epoxy material. Values were approximately 180xI04 up to a

frequency of approximately 420 Hz.

Hoa and Ouellette (49) experimentally determined the darm ping loss factor of plain

weave Kevlar 49 fabric impregnated with Narmco's 5208 epoxy resin, unidirectional

T-300 Graphite/5208 epoxy, and various hybrid combinations of these two materials. The

goal of their work was to obtain a laminate that had twice the stiffness of aluminum along

with twice the damping loss factor of a graphite/epoxy panel. Initially, the loss factor of

the Ktvlar fabric and the unidirectional graphite/epoxy materials were determined. Next,

various hybrid configurations were fabricated and tested to determine the resulting loss

factor. Their results are given in Table 9. It can be seen that the maximum damping

occurred when the Kevlar/epoxy was subjected to the largest axial stress level and the

graphite/epoxy was subjected to the largest shear stress. The specific configuration used to

meet their goal was a Kevlar/graphite/Kevlar laminate with the orientatian of

[(0/90)2/03/(0/90) 2]T.
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Table 9: Effect of Material and Laminate Configuration on the Damping Loss Factor of
Plain Weave Keviar 4915208 Epoxy, T-300 Graphite/5208 Epoxy arid
Keviar/Graphite/Epoxy Hybrid Composite. Materials(after Hoa and Ouellette (49)).

- -a i Lss
Material Configuration Strain Frequency Factor

________(P in/in) (Hz.) (X 10-4)

Key/epoxýy Io/9O1fr 300 34.0 134

Kev]co [± 4 5 ]5T 300 17.1 197
-Gr/epxy 1i0i8T 300 63.0 42

Gr/KevI(rA~poxy 02±4Zj3 300 67.8 41
__________ _____ 300 65.6 42

Gr/ev~/eox [020/90~)vVIU____

Kev/Gr/Kev/epoxy [(0 /9 0)2fiD3 1 (0/90 )2jj 300 50.6 138

Kev/Gr/Kev/Gr/Kev/epoxy [(O/ 90)/OI(0/90)AV/(0/ 90)I!T 300 34.1 1INI Kev,!Gr,/KevjeEoxy l(0OJ)2/02 /(0/90))l 300 83.3 88
Kev/Gr/Ke-v/ePoxx (0/90)3/V(0M.))] 300 97.1 96
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Theorctica• Detennination of Uamping

There have been numerous analytical models which have been developed for

determination of the damping loss factor for composites. These approaches have attempted

to determine the damping of a larnina from a micromechanical approach, the damping of a

laminate using a macromechanical appioach, and the damping that a composite structure

would possess. Each of the individual approaches is important for the ,aver-all design of a

damped composite. Each of (he approaches ultimately builds upon damping or viscoelastic

characteristics of the material constituents. This interrelationship is depicted in Figure 9.

An understanding of this interrelationship is manifested in the design process of composite

structures. From knowledge of the structural requirements of a component, a designer

chooses the appropriate fiber and matrix system, or laminae. For the determination of the

damping of the laminae, an understanding of the contributions ot the material constituents

and their combined response is necessary. These ! nina characteristics are then required to

determine the damping of a laminated composite. In addition, the stacking sequence and

ply orientation effects must be considered in determining the damping response of a

laminated composit:. These stacking sequence and ply orientation effects are then

necessary inputs to the damping analysis of composite stcuctures. Again, additional

characteristics, such as damping provided at joints, and aerodynamic and hydrodynamic

damping, must be taken into accouni to obtain an accurate determination of the damping of

the composite stnacture.

Analytical models that have been ,resenied in the literature have typically attempted to

determine the damping associated with one of ih! three general areas discussed above. The
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Micromechanical Approaches

fiber matrix

1. viscoelastic response of constituents
2. cyclic heat flow (thermoclastic response)
3. fiber rnazrix interphase effects
4. material anomalies
5, fiber volume fraction Macromechancial Approaches

(Composite Lamrrinate)

1. viscoelastic response of laminate
2. ply orientation effects
3. stacidru, seanmenc effec-,ts

Structural Approaches

1. joints
2. control systems
3. aero/hydrodynamic damping

Figure 9: Damping mecianisms of composites.
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review that follows will discuss the analytical models that have been formulated to

determine the damping of composites on the micromechanical, macromechanical and

structural ievels.

Micromechanical Models

Three models that had moderate success at predicting the damping loss factor of

various composite systems were presented earlier. These models werc the rule cf mixtures

approach (43), the model of Hashin (35), and the model of Adams and 3acon (45). The

modified rule of mixtures, as was introduced in the previous section gives the in-plane loss

factor of the composite as

T'i1n =1,Vm (15)

where Vm is the volume f-action of the matrix and ilm is the loss factor of the resin system.

This indicates that the loss factor of the composite is fixed once the resin system is chosen.

The model of Hashin(35) is an extension of the rule of mixtures approach. He

incorporates the fiber elastic properties in the calculation of :he material loss factor. In this

case the in plane loss factor is given as

E[Vr

LEr(1vf) (16)
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where Ef and Vf are the elastic modulus and volume fraction of the fibers. This would

indicate that as the stillness of the fibers increase, the loss factor of the composite

decreases, when a particular resin system is used with identical fiber volume fractions.

A third analytical model that has been used successfully to predict the loss factor of

metals, and which may be operative for composites is the Zener Thermoelastic Theory

(26). As was previously indicated, according to this theory, the loss factor for a beam

vibrating in flexure is given by

ox2 ET 0'
= C + ( 0 2 2) (6)

where (x is the coefficient of thermal expansion, E the Young's modulus, T the absolute

temperature, C the heat capacity, (o the angular frequency, and -t the relaxation time for heat

flow across a beam of rectangular cross section. The value oft is determined by

h2 C2

n 2 K (7)

where h is the beam thickness, and K is the thermal conductivity of the beam material.

This analysis takes into account only the energy dissipation which results from thermal

currents and ignores the viscoelastic contribution that the constituents may have. This in

itself would not be recommended as an appropriate model to determine the loss factor of

composites. However, this contribution in conjunction with the Hashin model would

provide a more accurate estimate of the material damping loss factor of composites.
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Using the Zener thermoelastic theory, the loss factor as a function of material

thickness was investigated for a graphite/epoxy unidirectional composite. Literature values

for the thermal conductivity, heat capacity, and coefficient of thermal expansion were used

in equations 6 and 7. For a beam with a thickness of 0.04 in (1.02 mm), the peak value

occurs at a frequency of "-proximately 10 Hz. At frequencies greater than 100 Hz., the

calculated loss factor is less than 10 x 10 -4. As the thickness is increased to 0.125 in

(3.18 mm), the peak is shifted to a frequency of approximately 1 Hz. At frequencies

greater than 10z, the calculated loss factor is less than 10 x 10-4. As the thicknesses

increase, the frequency at which the peak value occurs is shifted to lower frequencies with

a smaller bandwidth of significant contribution. As such, the energy dissipated from cyclic

heat flow in composite materials is minimal at best for typical frequencies of interest.

Mallik and Ghosh (50) developed a theory concerning the damping oi composites that

have high damping particulate inclusions incorporated into their structure. In this analysis,

they considered the inclusions to be uniformly distributed in the matrix material. They

divide the material into unit cells which are cubes of side "b," each with a spherical

inclusion at its center. They then subjected the cell to a tensile stress T and computed the

stress field around the inclusion.

The damping capacity was computed as the equivalent logarithmic decrement given

by

D2:W (19)
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where D is the energy dissipated per cycle, and W is the maximum elastic energy during the

cycle. The values of D and W are computed as follows:

D ffjT2 + 2 20 21_1=JJG + 2 +o 3 (GC2 -a 2 (Y3 -a~ YP 1dV (20)

1= 2 1-V(0C1 + a 2 + 03) E ̀- ( TI 2 + G2 103+a i 3) (21)

where E is the modulus of elasticity, v is the Poisson's ratio, and J and n are material

constants. This integration was carried out numerically.

A parametric study was carried out using various inclusions and the material

properties v = 0.3 and n = 2.5, where n is the damping index of the matrix. Although the

value of v is actually variable with the material, its effect on the damping capacity was

insignificant. Results indicated that rigidity is not attected by the inclusions, while

damping capacity is enhanced greatly. No indications were given concerning the values

used in the study and to what materials the appropriate damping capacity values would

theoretically correspond,

This work appears to support the work of Lameris and coworkers (51). In their

experimental investigation, these authors determined that adding a weight to the composite

structure at various locations could enhance the damping of the structure. The work of

Mallik and Ghosh (50) shows that, as one adds particulates to the composite, which can be

considered as the degeneration of macroscopic weights added to the exterior of the

composite, the damping is substantially enhanced. For the composite materials currently in

use, the incorporation of a very dense, uniformly distributed particulate into the composite
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during fabrication may substantially enhance the structural damping of the system.

Kishore and coworkers (52) presented a theoretical analysis on the effect of the

bonding of the fiber to the resin on the damping of the composite system. In their analysis,

they assumed that if the bonding is poor, there is a loading above which slip will occur.

When this happens, there is a resultant dissipation of energy from friction at the interface.

By varying the coefficient of friction at the interface, the loss factor is determined from the

maximum strain energy stored during loading of the composite. The loss factor is then

calculated as

W
2tU" (22)

where W is the energy dissipated during one loading cycle and U is the maximum strain

energy stored in one cycle.

From their analysis, they showed that a loss factor for a composite which is as high

as 1200xIO-4 can be achieved. The loss factor is also a function of the applied load. No

slip occurs until the critical load is reached, resulting in a loss factor that one would

normally anticipate for a properly made composite. After this critical loading, further

increases in loading increase the loss factor of the composite up *o a certain large amplitude.

A maximum is reached because eventually a separation occurs within the composite,

between the fiber and the resin, so that no frictional loss of energy is available. In general,

using this analysis, the loss factor was shown to vary between 300x l0"4 and 800x00-4,

typical of values expected for some composite materials.
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These models do not take into account the numerous factors that have been shown to

affect the damping loss factor of the composite, such as the fiber orientation and thickness,

fiber diameter and fiber volume fraction to name but a few. In addition, the viscoelastic

characteristic of the matrix material, or the frequency effect, is also ignored. A

comprehensive micromechanical analytical model should account for these various

microscopic aspects in determining the lamina damping characteristics of composite

materials.

Macromechanical Models

Two macromechanical approaches predominate the literature, the elastic-viscoelastic

correspondence principle and strain energy approach. These approaches are used to

determine the laminate damping loss factors.

Numerous investigators have suggested the use of the elastic-viscoelastic

correspondence principle for determination of the damping loss factor of

composites (53-57). This procedure utilizes as input the lamina loss factor characterstics

to determine the effective laminate loss factor.

Typically, the fibers are assumed to be elastic and the matrix is assumed to be linearly

viscoelastic. As such, the composite behaves macroscopically as a linearly viscoelastic

body. For a material subjected to oscillatory loading, the time varying local average

stresses and strains can be expressed as
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* i t

- (23)

* ic~l
(Y= Oi el (24)

Hashin (35) has developed a geaeral theory of complex moduli of viscoelastic

composites which indicates that the macroscopic dynamic behavior may be approximated

by classical continuum dynamics for relatively low frequencies. The composite viscoelastic

response can then be determined by replacing the phase elastic moduli with the identical

phase geometry by the effective complex moduli.

The elastic stress strain relationship for a material can be expressed as

Yij = Qijkl Ckl (25)

where Qijkl is the classical stiffness tensor. Applying the elastic viscoelastic correpondence

principle to a material elastic behavior characterized by equation 25, the viscoelastic

response is then given by

Y* = Q*Qj iki (26)

A contii uous fiber composite lamina possesses orthotropic symmetry. If the material

is subjected to plane stiain conditions, the number of elastic constants required to

characterize the reduced stiffness components, Qij, given in equation 25 reduces to three:

El, E2 , and G12. Utilizing the elastic viscoelastic correpondence principle, the

corresponding components in equation 26 become

E* = El' + iEl" (27)
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E2 * = E2'+ iE2"(28)

C12* = G12' + iG(12" (29)

where El', E2', and G 12'are the real in-plane modulus, of storage modulus, of the

composite and El", E2 ", and G12" are the imaginary part of the complex modulus, or loss

modulus. The components of the stiffness matrix, Q*ijkl can be written in terms of the

complex moduli given in equations 27-29. For a general laminated plate, the components

of the reduced stiffness matrix become

QiI -- E
-)002 (30)

U 12E2 _ U21 E_

(k1-1)21 1)2) (1- )21 u1 2 ) (31)

E2
Q 2  (1-41 'U*2 (32)

Q66-= G2 (33)

"To determine the viscoelastic response of a general laminated composite, tensor

transformations of the stiffness matrix is performed. These reduced stiffnesses are

obtained by multiplying the Q*ij by the direction cosines. These values are given as

QI = m 4 Q1 I +2mr2 n [Q12 + 2Q 6 6 + n4 Q;2  (34)

Q12 = 21 =mn [QA + Q; 22- 4Q 6•]+(m4  n4 )I 2  (35)

4 - 2 2 4
Q2= n Q1 +2m n IQ*2 + 2Q66 ]+ m Q22 (36)



80

" * 3 2* -2

Q16 =m n[Q1 1 -Q 12 ]+mn [Q12 -Q 22 ]-2mn(m -n )Q6 6  (37)

-* 3 * ,3 2 2 *

Q26=mn [Q.-Q:2 ]+m, n [Q2- Q*2 I]+ 2mn (m2- n2 ) Q•6 (38)

Q66 = m Q2 n2 1Q + Q02 -2Q66 ]+ (m4 + n4 ) Q: 6  (39)

where m is the cosine of 19 and n is the sine of E) where (3 is the angle the fibers make

with the principle load direction.

The elastic response of a general laminated plate can then be defined in terms of these

reduced stiffnesses as
N

Aj= A.+ iA:.-= +I(
A i = A j + A;: Qij' + iQij") k(hk -hk_,)

k=1 (40)

N

B*:= B'.j+ i. + Q k) (,,k 2_h 2
i j'J 1 J 2 iQ,") (k k-hk.)

k=1 (41)

N
D' (k)C h' 3h 3_

D " +iD 1 ij'+ i'Qij,,)k( h•kh•l)
k=1 (42)

where h is the distance of the ply interface from the midplane of the composite laminate.

The manner in which the loss factor would be determined for a general laminated

plate would be to determine the effective complex elastic constants. "Faking the ratio of the

imaginary to the real part of the effective modulus will result in the effective loss factor for

the particular system. For example, the effective loss factor in tension could be estimated

by using the relation for the effective longitudinal modulus,
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2
AEtA22-A 122 I

E hA2 h A, (43)

and through the sabstitution of the complex quantities, the resulting loss factor can be

determined using equation 5 as

E Al"-1
E' A- 1

A A11  (44)

In theory, the utilization of the elastic viscoelastic correspondence principle will allow

for the determ'.nation of the damping loss factor of any general laminated plate of composite

materials, including hybrid systems. An underlying assumption in the above development

is that the matrix properties, and therefore the composite properties, are temperature and

frequency dependent. As such, this frequency dependence should be carried through the

analysis, yet is typically ignored in the literature. In addition, another major limitation to

the theory is a lack of experimental information on the damping loss factor of the various

composite systems which can be implementedt into the above analysis.

The other macromechanics approach to determine the damping loss factor of a general

laminated structure is through the computation of the strain energies. Many investigators

have used this approach. A discussion of two variations of this technique are given below.

Plunkett (36) presents an analysis for predicting the damping loss factor of an

isotropic homogeneous material. For gencral dynamic deformation, he states that the only
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way to consistently define damping is to define it for the deformation state, which is exactly
cyclic. For one cycle, the energy dissipation is given by

AW (x) = '-ij(x,t) dt dt

where "tq is the shear stress as a function of position and time and ej is the shear strain.

This formulation determines the change in strain energy of the system over one cycle of

vibration. Any losses due to the various damping mechanisms in the material will be

included in the value of the strain energy. Since the defnrmation is exactly cyclic, the

following stress relation holds:

xij(t + T, x) = tij(t, x) (46)

The maximum strain energy of the system is determined to be

U(x) = f0 T'a ij dcij 
47

Plunkett (36) then assumes that the strains are sinusoidal. Also, by expanding the

stresses into a Fouricr series, only the fundamental component of the stress contributes to

the energy dissipation over one cycle, AW. Using this Fourier expansion and the elastic

properties of the material, the stresses, even for an anisotropic material, can be written as

CXij"- kl 'E l (48)

where C*ijkl is the complex stiffness tensor. The local energy dissipation and the

maximum strain energy can then be written as
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AW = -RCijkl Eij Ckl (49)

1 *
2 Cijkl F-j k (50)

where C'ijkl and C"ijl are the real and complex parts of the complex modulus. Through

further reductions, Plunkett (36) arrives at an analytical determination of the material's loss

factor as

AW
1S = Tn=• 

(51)

In this analysis, then, accurate determination of the complex modulus is required for

the prediction of the damping loss factor. In composite materials, values of the loss

modulus are not readily available for either the lamina or laminate.

Although the procedure is capable of analytically determining the loss factor,

Plunkett (36) indicates that the values of the energy dissipation and the maximum strain

energy at the particular location are not experimentally measurable quantities. It is

necessary to integrate these values over the volume of the material, thils determining the

system damping loss factor. This is the experimental quantity that is deterrmined by the

various test methods. Plunkett (36) points out that as a result, the loss factor measured in

any experimental system determines the system damping loss factor and not the material

damping loss factor.

Plunkett (36) indicates that if the damping is small enough, less than 0.1, then the out

of phase stress is sufficiently small and therefore does not affect the in-phase vibratory
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strain. Because this causes the mode shapes to remain the same, the nonlinear damping can

be handled in the classical way, using equivalent damping coefficients, as long as the

interaction is properly accountea for.

Plunkett (36) also compares the analytical predictions with experimental results of

other investigators. He concludes that almost all of the energy dissipation in the composite

materials tested is due to the strain field in the organic matrix materials, with some

contribution by the fibers in the fiber direction.

Alam and Asnani (58) provide a more rigorous approach to the determination of the

strain energy for a general laminated composite material. They point out that, currently,

composites are dynamically analyzed by replacing the laminated plate structural

characteristics with that of a homogeneous orthotropic material. Because of this, the true

deformation of the individual layers may not be accurately represented. To account for

this, Alam and Asnani (58) consider the elastic properties of each layer separately. In their

analysis, they also consider tie extension, bending, in-plane shear, and transverse shear

deformations in each layer of the laminate.

They first determine the displacement at a point z from the mid plane of the ith layer

along the x and y directions respectively as

I zi
u, = 5(ui+l + u1 ) + i-(ui~4 - ud)

(52)
1 ziv= (V (v+, + vi) + - v+ i

ý 11 ti vi+I- i)(53)• _
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where ui, vi, ui. 1 , :ind vi, 1 are the displacements of the two surfaces of the ith layer along

the x and y directions respectively, and ti is the thickness of the ith layer. The strains are

computed in the classical manner as the derivatives of the displacements. The resulting

stresses are then determined from tute strains by using the stiffness matrix, which has

components of Q, 1 , Q12, Q22, Q66, Q44, and Q55-

The strain energy of the system is then determined by summing the contributions of

each layer to the strain energy, which is given by

Nt'
U--- T0 -I •(CFXX'iCxx'i+t (7yy'ilyy'i+'I- xy'iy'xY'i-I Cyz'l~ z~ie •ziy7.i)dzidxdy

i= 1,2 2 (54)

where N is the total number of plies in the laminate and a and b are the lengths of the plate

along the x and y directions respectively.

The kinetic energy of the plate is then determined from the displacements by the

following equation

N b aI t i ' f . u 2 +( v.i +v~ Ui( ) 2 2 2 2 (V i \ i 2 ý ý xd
= 0l ýP w /l)TI: w2 f u2 + u, vi +2vi+], ui 2 t12 2i 12i+2 oJ 2 2- "9 +~ •. 2 dxdy

i = 1,2

(55)

where the • is the time derivative.

The work done by the external excitation f(x,y)sin(wt) is the force times the

displacement, given by
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V= J J w f(x,y) sin uot dxdy (56)

where the integration is carried out over the plane of the material.

The strain energy and the kinetic energy are next computed from the displacements

and the normal stress transformations. They then utilize the Reissner Variational Theorem,

which uses the kinetic and strain energies, and the work done by the system, and apply

Hamilton's principle. The minimization process yields the governing equations of motion.

From the governing equations and the boundary conditions, which must specify the initial

displacement and velocity, the, displacements are obtained as a functions of dme and

position.

In the serics solution for the displaccrncnts that satisfy the boundary conditions, the

real moduli are replaced by the complex moduli. The system is then solved as a complex

eigenvalue problem. The real part of the complex eigenvalue is the resonant frequency

parameter. The ratio of the imaginary to the real part of the complex eigenvalue is the

system loss factor.

Again, the utility of this theory is limited due to the lack of experimental values for the

complex modulus for composites. This theory also fails to take into consideration the

frequency dependence of the material. Estimations were made on the loss factor of various

fiber orientations using the above analysis. They assumed that the loss factor of the fiber

was zero, while the loss factor of the matrix was assumed to be 0.5. Alam and Asnani(58)

acknowledge that the material has a frequency, temperature and strain dependence which is
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ignored in their analysis. The calculazed loss factor results that were obtained for certain

orientations were equal to the assumed loss factor of the resin. In practice, this level

should never be approached, based on the volume fraction of the resin and configurations

that are utilized. It is not known if the utilization of more appropriate values of the loss

factor for the various orientations would result in more appropriate values for the various

orientations. What is evident from this analytical effort is the need for appropriate

experimental information which can be utilized in the model.

Two other results of the work of Alam and Asnani (58) are that the damping loss

factor decreases with increasing thickness of a cross-ply material and that the damping loss

factor increases with decreasing values of E1l/E 22. The first finding is consistent with the

earlier work of Clary (16).

Approaches that have been used to determine the loss factor of composite structures

have been to utilize. finite element models to determine the energy dissipated and strain

energy stored in the system. The following will present some of the variations that have

been used for damping determination ir1 composites.

Brockman(59) provides a summary of the finite element solution methodologies for

determination of the damping loss factor of composites. Commmn to these techniques are

the following assumptions: 1. displacements and strains are infinitesimal; 2. the material

M ----- --
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behavior is linear and viscoelastic; 3. the steady-state viscoelastic behavior of the materials

can be characterized by three parameters, namely the bulk modulus, shear modulus, and

damping coefficient; 4. the applied loading varies sinusoidally with tinge.

With these assumptions, the strain displacement equations are given as

I (atli + Uj
Ox a ) (57)

the momentum and moment of momentum equations are

S+ =o vi (58)

Oi = 'ji (59)

and the displacement and force boundary conditions are

ui =ui on V U (60)

Gji Ili = ti Oil aVf (61)

The assumption is made that each component of displacement varies sinusoidally with

time at a given frequency, for both the free vibration and forced vibration at a single

frequency. Thus, ui can be expressed in the product fonr

ui (XkIt) = Ui(Xk) eiC (62)
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The material model results in a linear relationship between stress and strain of the

form

oiJ Cijkl Eki (63)

where C is the tensor for an isotropic material. The bulk and shear modulus are then

assumed to be complex-valued. They are described as

G =G'(I + rl) (64)

K = K'( + r,) (65)

In the above relationship, the damping loss factor that is used for both the shear and

the bulk modulus is assumed to be the same. This use of a single loss factor by the finite

element techniques is their major limitation for calculation of the composite damping loss

factor. Although !his limitation is acknowledged by most investigators, it is the result of

the limitation of the source code. In addition, there are no provisions available to

incorporate the frequency dependence of the material.

In addition, the strains and stresses are assumed to be complex-valued, with the real

componen. denoting the in-phase contribution and the imaginary component denoting the

out of phase component of the stress and strain.

A system of simultaneous equations, obtained from the finite element discretization, is then

solved. These equations are of the form
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([K - (o2 [M]) {U) = (F) (66)

where

[K] = system stiffness matrix (complex valued)

[M] = system mass matrix (real valued)

(U ) = nodal displacemcnts (complex valued)

(F) = nodal force amplitude (usually real valued)

o) = frequency of vibration

The solution techniques that are utilized to solve this system of equations are the

complex eigenvalue solution, the frequency response solution, and the real eigenvalue

solution. The complex eigenvalue solution solves for the frequency and mode shape by

considei.'ng tL:o unforced motion of the system, using the _ratio of energy dissipated to

energy stored for system loss factor determination. The frequency response srlution

solves the system of complex-valued linear equations, thereby obtaining the corresponding

displacement shapes and plotting the resulting amplitude and phase quantities versus the

forcing function at several frequencies, followed by the calculation of the energy dissipated

and energy stored. The real eigenvalue solution solves the real eigenvalue problem for

frequency and mode shape, assuming the system stiffness matrix to be real. By substitution

of the damping loss factor of the material, the strain energy stored and dissipated by the

system is determined.

Bert (60) presents a survey on the vibration damping of composite materials. He

presents some of the analytical models that have been used to predict damping in

I=-
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composites. Bert (60) notes that, to his knowledge, no analytical models available can

predict the damping loss factor irn composites in which the fibers are anisotropic. Graphite,

boron and Kevlar fibers are anisotropic. Thus, according to Bert, the only composite

system that presently ca•i be modeled is one which utilizes glass fibers. Furthermore, the

models that are available assume that the fibers are perfectly bonded to the matrix and that

there is no interphase region around the fiber.

Bert (60) concludes that for designers concerned with the damping of composite

materials, only trends are available fc:- design considerations. Bert (60) says that to

maximize the damping loss factor in a composite system, the designer must incorporate the

effect of the fiber and matrix materiai, the volume fractions, orientations, and laminate

arrangements into a model, although no currently available model incorporates these

factors.

Summary

Two experimental techniques have predominated in the testing of the damping loss

factor for composites: the forced vibration technique and the free vibration technique. Both

techniques tes: the material in flexure. The impulse hammer method using the

noncontacting eddy current probe appears to be the currently accepted premiere technique

for experimentally determining the damping loss factor of composite materials.

The damping loss factor for composite materials has been shown experimentally to be

dependent on the fiber angle, specimen thickness, the resin system used, the frequency of
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test, the fiber volume fraction, fiber diameter, beam stiffness, state of damage in the

material, and, in some cases, on the stness amplitude. A fiber angle of 45 degrees appears

to maximize the damping loss factor with the other fiber orientations ranked as follows:

45 > 60 > 75 > 90 > 30 > 15 > 0. For the Kevlar/epoxy composite, however, the damping

loss factor in the 0 and 90 degree directions were approximately equivalent. Polyester resin

has a higher loss factor than epoxy. These resins can be ranked in order of decreasing

damping loss factor as follows: Polyester > Fiberite 934 > Narmco 5208 > Narmco 5213.

It should be noted here that the Fiberite 934 and Narmco 5208 are both high temperature

curing epoxy, 350' F, with very similar mechanical properties. The type of fiber used also

affects the damping loss factor. This can be due to the fiber's contribution to the damping

or to the difference in the interface properties of the fiber and resin systems investigated.

Increasing the fiber volume fraction, the fiber diameter, the specimen thickness, and the

beam stiffness reduces the damping loss factor. In most cases, increasing the amount of

damage in the material, the stress amplitude of test, or the frequency of test increases the

damping loss factor. The maximum damping loss factor for glass/epoxy, graphite/epoxy,

Kevlar/epoxy and glass polyester tested at 45 degrees are I 10x10-4 , 325x10-4 , 190x10 4 ,

and 103x1i0a respectively. These results have to be viewed with caution since in no

investigat on was it indicated that the panels were inspected for quality. Since damage in

the material will enhance the damping loss factor of the composite, it is unknown whether

the indicated damping loss factor was the result of the particular characteristics of the

material or the result of material quality.

The results that are summarized above indicate that there are numerous material

constituent characteristics that affect the loss factor of the composite material. In addition,

these investigations have not appropriately characterized the frequency denendence of this
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viscoelastic material.

The theoretical models currently available to predict the damping loss factor for

composites are inadequate for design purposes. Any micromechanical approach for

determining the loss factor of composite laminae which could incorporate the material

characteristics that have been shown to affect the loss factor and which could be

experimentally validated would be virtually impossible. The macroscopic approaches do

not account for the frequency dependence, i.e., the viscoelastic characteristic, of the

material. In addition, there does not exist an adequate characterization of the material loss

factor which could be utilized as input to these models. The structural approaches do not

account for either the frequency dependence of the loss factor or the anisotropic variation in

loss factor. This latter limitation may be the direct result of lack of appropriate input.



Chapter 3

ANALYTICAL MODEL DEVELOPMENT

There have been numerous approaches undertaken to determine the damping of

composites. These approaches can be grouped into micromechanical, macromechanical

and structural approaches. The most fundamental approach would derive the damping

response of composites from the material constituents in an analogous manner to that in

which the elastic behavior of composites is determined. This approach would provide the

most utility. However, in addition to the characteristics of the material constituents, their

interaction and physical characteristics have also been shown to affect their damping

response. The incorporation of these effects as well as the necessary experimental

validation of a micromechanical approach would be difficult if not virtually impossible.

In the structural analysis of composites, the fundamental building block is the

composite lamina. The elastic response of the lamina incorporates the elastic response of

the material constituents as well as their interaction and physical characteristics. Because of

this, most composite design utilizes material characteristics of the lamina in lieu of the

characteristics of the individual constituents. In addition, the lamina characteristics can be

readily determined through numerous standardized test procelires.

94
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In a similar vein, the determination of the damping of a composite from knowledge of

the composite laminae damping characteristics will automatically incorporate the material

constituent characteristics, e.g., the fiber diameter, fiber matrix interface, fiber and matrix

loss factor, and fiber volume fraction. With knowledge of the anisotropic damping loss

factors of the iaminae, the damping response of a general laminated composite could then

be determined. In addition, experimental techniques have been developed which can

determine the laminae material loss factors. Therefore, one should be able to

experimentally determine the material characteristics required for such a rmrodel. For these

reasons, the approach that will be developed in this dissertation is a macromechanical

approach.

There have been two approaches previously undertaken to model the

macromechanical damping response of composites, the elastic viscoelastic correspondence

principle and the strain energy approach. Of these two models, the elastic viscoelastic

correspondence principle is the most utilitarian since fundamental parametric studies can be

readily undertaken. This is the result of the model's ability to determine the fully populated

complex reduced elastic stiffness matrices from the in-plane material complex elastic

properties. As the model currently appears in the literature, there is one major material

characteristic missing: the viscoelastic characteristic of the composite.

The polymer matrix mateiial utilized in the composites materials discussed herein

possesses temperature, and frequency dependent dampng loss factors, as illustrated in

Figure 1. Because of this, the composite material should also exhibit a frequency and

temperature dependent loss factor. In fact, in the discussion of the elastic viscoelastic
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correspondence principle, many of the authors refer to this fact, yet omit its effect from the

subsequent analysis. To provide a more accurate description of the damping of

composites, their frequency dependence should be incorporated. The analytical model that

will be developed in this dissertation will be a modification of the elastic viscoelastic

correspondence principle to incorporate the frequency dependent anisotropic loss factor of

the laxrinae for the analytical determination of the damping loss factor of a general

laminated composite.

Macromechanical Model Dvlpym..i

The development of the elastic viscoelastic correspondence principle for composites

has been given in Chapter 2. A detailed discussion of the development of this model for

use with laminated plate theory will be presented. Th'is is necessary to ensure that the

principles associated with the elastic viscoelastic correspondence principle are not violated

in the application to laminated plate theory.

The correspondence principle states that if the elastic solution for any dependent

variable having a time varying component exists, then the viscoelastic problem can be

solved by replacing the equations of the elastic material by the equations that describe the

viscoelastic material. The principle can be applied if (1) the elastic solution is known, (2)

no operation in obtaining the elastic solution has a corresponding operation in the

viscoelastic solution that involves separating complex modulus into real and imaginary

parts with the exception of the final determination of that response, and (3) the boundary
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conditions for the elastic and viscoelastic cases are identical (61). These conditions are

satisfied for the case of the vibrating beam.

Schapery (62,63) discusses the mathematical implications of the correspondence

principle. If one performs the Laplace transform on the governing field and boundary

equations with respect to time, they can be reduced so that they are mathematically

equivalen: to the elastic problem. Consider an isothermal problem, which is the same

condition implemented in this dissertation. Schapery (62,63) begins his development using

the fundamental constitutive relationship for linear viscoelastic materials which provides the

relationship between stresses, yij, and strains -ij, for a material with arbitrary degree of

anisotropy. This relationship can be expressed as

aj C(67)

Taking the Laplace Transform of equation 67 and through some simplifications, Schapery

shows that the resulting equation becomes

dii • tkl •k (68)

-kd
where the Ci j term is the product of the Laplace transform of .j and the s term of the

Laplace transform procedure. The time dependent equilibrium equations are given as

a3(ij- +Fi=0

(69)

where F, are the components of the prescribed body force vectors. The six strain

displacement relations are given as
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% ,D• xi a) (70)

Equations 67, 69 and 70 completely describe the viscoelastic body. It should be noted that

in the above equations 69 and 70 that the dependent variables are actually functions of four

independent variables, xi and t. Equations 69 and 70 are then operated on by the Laplace

transform, which yields

a .ij

(71)

qi'j j1  + JXi (72)

Christensen (64) shows that the time dependent solution tor the dynamic and quasi-static

problems can be readily obtained if an analytical solution to the associated elastic problem

exists. In this case, the substitutions

Cijkl -' Cijkl Ui Ui - Ui A e

Oij "-+ (Tij (7ijA el ot" Ej Eij EijA e (73)

can be made, where the subscript A denotes a time independent amplitude and co is the

frequency.

Hashin (35) extends this theory with further simplifications for composite materials.

Letting F represent one of the elastic moduli of the composite, it can be described in terms

of N phase properties as F = F(pj) where pj are the phase properties for the composite.
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These phase properties form the set of all elastic constants of all phases which are needed to

predict the effective property F. The effective complex viscoelastic property is then given

as

F -F(p') (74)

where F is still the elasticity solution. Its arpuments, however, are now complex phase

properties. These complex phase properties can also be written as

pj = pj [ 1 + i Tlj (75)

where pj* is the complex modulus. The effective modulus is then expanded in a multiple,

complex Taylor series, using the real part of the complex phase property pj' a- the set of
values about which the expansion is made. Assuming that all constituent loss factors are

sufficiently small, the second and higher order terms in 11j can be neglected. This results in

the Taylor expansion of F* as

F* =F I + irl]-F+iF (76)

where F' is the e!astic solution in terms of the real part of the phase properties. This

development shows that with small damping, the effective complex properties can be

derived directly from analytical elasticity solutions. If the constituent loss factors are not

small, this same procedure can be used with a minor modification. In this case, second or

possibly higher order terms in the Taylor series would need to be included, making the

resulting equations much more complex. In the development that follows, then, the

substitution of the viscoelastic comp. , moduli, in the form given in equation 76 will be

made.
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An additional assumption that is made in this development is that the composite is

linearly viscoelastic. A viscoelastic material possesses a time dependent elastic and viscous

response to either an applied stiess or strain loading. A linearly viscoelastic material is a

subset of this having the property that the time dependent mechanical properties are

independent of the level of stress or strain loading.

The local material behavior is governed by the elastic constitutive law as

oij :-- Cijkl Ekl (77)

In contracted notation, equation 77 can be expanded and written as

Ox + C l2Cy+ C 13 Cz+ C 14 "tyz+ C 1 5Y'zx + C 16 ^,xy

Oy = C21tC + C22Cy + C23Ez + C 2 4 'yyz +C 2 5 "fzx + C26Yfxy

1XY = C61Fx -1 C62Ey + C 6 3ez + C64"1yz +C 6 5y77x + C66YXy (78)

The elastic viscoelastic correspondence principle can be applied to equations 77 and

78 since these equations meet the conditions stated in the principle. For the specific case of

a vibrating beam, the stress and strain have time varying components. As such, Oij and c-

are given as

£ = j e (79)

0 0 e (80)
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It is also assumed that the complex moduli are frequency dependent, consisting of a

real and imaginary term, called the storage and loss modulus, respectively. It will be

assumed that the storage modulus is independent of frequency. In the frequency range of

interest, up to 1000 Hz., this is a very good approximation based on the work of other

investigators (27,35,41,64). The frequency dependence of the complex modulus is

therefore the result of the frequency dependence of the loss modulus. This frequency

dependence of the loss modulus is the result of the frequency dependence of the loss

modulus of the matrix material which has been been shown to occur by various

investigators (1,2,3,64). As such, using the elastic viscoelastic correspondencc principle,

equation 77 is given as

a;l=ki (81)
where

Ck ,Rcal + C hRI ag

"-" ijkl ijkl (82)

Two assumptions are now made. First, that the fiber composite material can be

approximated as a homogeneous material with orthotropic material properties. This

reduces the number of elastic constants given by equations 77 and 81 from 36 to 9. A

second assumption is that the material is in a state of plane stress assumption, where the

stresses normal to the plane of the plate are assumed to be zero, i.e. 03= '12 3 = T 13 = 0.

Without loss in generality, the time-varying components of the stress,

0 3 e00t =1 2 3 eit)t = 113 ei'(t can likewise be assumed to be zero. This assumption further

reduces the number of elastic constants to 4 independent values. The viscoelastic

constitutive relationships can now be expressed as
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cr= --:QIICXQ~2  164 (83)

+ + (84)

Q1 +(85)

Equations 83-85 reduce to the elastic case if there is no frequency variation in stresses and

strains. This is equivalent to setting the frequency equal to 0. As such, the time varying

component for w = 0 gives the result that eCit = 1. In this case equations 83-85 become

ax = QllCx+Q 12 Cy+ Ql6Yxy (86)

=y Q21cx + Q22Cy + Q26±xy (87)

C12 =Q6Ex + Q62E, + Q66Txy (88)

The flat plate may be acted upon by applied moments, M, distributed applied loads,

q, in-plane loads, N, and point inads P. It is assumed that the plate consists of multiple

layers of composite lar'inae, with the fibers in each plate being parallel to the plane of the

plate. Kirchhoff's hypothesis is then applied to the plate, i.e. lines that are straight and

normal to the laminate's geometric mid-surface remain straight and normal to this geometric

midplane and do not change length. This means that the lamina interfaces remain parallel to

each other after application of the applied loads. It is therefore possible to express the

displacement of the material points which lie along a line perpendicular to the laminates

geometric midsurface in terms of the displacement and rotation of the point on the line

located at the laminates geometric midplane. The implication of this hypothesis is that the

displacement at any point (x,y,z) depends linearly on z. The time dependent displacement
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in the x, y and z directions, given as u*, v* and w* respectively, can be written in terms of

the midplane displacements denoted by the 0 superscript, as

*i aw°(x,Y) a

u (x,yz) = u°(xy) e ' - z w(X-e)
x (89)

vk(x,y,z) = vO (x,y)e CiC- Z 4 elox (90)
(90)

w (x,y,z) = wo (x,y) C (91)

In the case where these displacements do not vary with time, equations 89-91 reduce to the

elastic case, again making use of the fact that eiwt = 1 for w = 0. These displacements are

then given as

u(x.,yz) = u°(xay) - z "w0(xy)
N (92)

v(x,y,z) = v0 (x,y) - z •w3(xy)

ay (93)

W(x,y,z) = w0 (x,y) (94)

The effect of Kirchhoff's hypothesis on the strain response, using the definition of the

strain ia the x direction on equation 89, results in

au"(xyz) au°(xy) e= z ZwO(xy) e (•u°k-•y) z 2we(xY)
"x ax - ax 2 ax ax 2 (95)
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The frequency independent strain is readily seen to result from the last equality, giving

du(x,y,z) a u0 (x,y) Za2w (x,y)
£, (x,y,z) - ax = ax z ax2  (96)

In equation 95, the first term in the last equality is due to the extensional strain of the

reference surface. The second term is the curvature of the reference surface in the x

direction since the material is limited to small rotations, which will henceforth be given by

Ki°. Using this information, equation 96 can be rewritten as

E,(x,y,z) = :x(x,y)e"O + z K-x (x,y)e'u

(97)

This again reduces that the classical case when the frequency is set equal to zero as

EX (x'y'z) (x,y) + z k1C (x,y) (98)

In an analogous manner, the time dependent strain in the y direction can be determined

using equations 90 in the same manner that the strain in the x direction was determined.

This development results in the transverse strain given as

av (x,y,z) avO(x,y)ei~ t a 2wO(xy) ei~t (v,(x,Y) _ a2wo(xY)eiO
a y - ay - -(ye = ( ay z - y2 ) (99)

"The resultant frequency independent transverse strain is derived from equation 99 as

= av(x,y,z) = v°(x,y) a2wo(x,y)
£y (x,y,z) = ayy a2 (100)
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In equations 99 and 100, the first term in the last equality is the result of the extensional

strain of the reference surface. The second term is the curvature of the reference surface in

the y direction since the material is limited to small rotations. Using this information,

equations 99 and 100 can be rewritten as

Ey (x,y,z) = Cy (x,y)e"i + z Ko (xy)el (101i)

&y (x,y,z) 4- (x,y) + z ic (x,y) (102)

Similarly, using the definition of the in-plane shear strains, the complex and conventional

in-plane shear strains are given as

=v(x,y,z) au*(x,y,z) 0 1iht+ 0 ia
YXY ax + ay -&y e +zKcye (103)

( =v (x,y,z) au (x,y,z) o
ax + yy xy+ z KCy (104)

Using the strains which were obtained using the Kirchhoff hypothesis, equations 83-85

can be written in the altemative form

_t * - _.*

Q11 Q12  Q16 + z KA

"trY Q12  Q226

(105)
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where oi* are the frequency dependent stresses as given in equation 80. These

relationships again clearly reduce to the general elastic case when the frequency dependence

is taken to be zero. The resulting relations are givcn below.

O01 Q1 Q1 + z C
0 0 0

(y Q12 022 + Z 0y

'txy 016 026 066 Y XY (106)

The Qij, both real and complex, are the reduced stiffnesses for a composite with arbitrary

fiber orientation.

The frequency dependent force and moment resultants are now defined as

hi
2 h

(NX, NY, Nxy )e f= (co, a•, y )dz=I 2( xt orcxy)e' dz
h

I -~ (107)

h

2 (108)

where h is the laminate thickness. These reduce to the analogous elastic case by letting wO

equal zero. This then gives the force and moment resultants as

h

(Nx, Ny, Nxy ) h ( &x' Fy, "Exy ) dz

1 (109)
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h

(MXMY, M )=h( X. ',xy )% z dz

2 (110)

The substitution of equation 105 into equation 107 yields for the time varying or complex

normal force in the x direction

i _ -O 0 0 ei cot

= i Y~ z r ) + Q xy z ixy )
Nxeitt f QI Q1(_X + z Kx9 ) + Q12(• +z! )Q16(7° + y) dz

2 '. 11)

which is seen to reduce in the frequency independent case to the classical force resultant

N f=__ [ll(re°+zKx)+Q 1 2(C +ZKy)+Q 16(Yxo +ZK1)y

2 (112)

The integrand in equation 111 can be distributed over the six resultant terms. In addition,

the strains and curvatures can be taken outside the integral since they are not functions of

position z. Further simplifications can be made by considering each of the integrals

separately. The first integral in equation 111 is given as

h h
-ef Q11dz

2 (113)

The reduced stiffnesses are material properties which vary from layer to layer but are

constant within any given layer. Since the reduced stiffnesses are piecewise constant, the

integral can be expanded through the thickness to give
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Qlldz = f Q1dz +f Qli 2dz +... + *N dZ

2 1 (114)

Since each of the Qij are only functions of frequency within the integral, they can be taken

out of the integration. The integration then becomes simply the thickness of the particular

layer of the material. Equation 114 can be written as a finite summation, given as

h N

fh1 Q, dz = Qllk(k (Zk-1)
2 k=1 (115)

In the classical elastic case, this is typically denoted as All. As such, this term will be

denoted as A

The same procedure can be applied to the other terms of equation 107 with similar

reductions being made. The mathematical manipulations performed do not violate any

fundamental principles. The results are presented below

h N

fhQ 12dz = A12 =X Q12k (Zk -Zk-1)

2 k= 1 (116)

h Nn
i Q 16 dz=A 6 = , Q)6k(Zk Zk-1)

2 k=I (117)

h N - z2ji Q1 1z dz = B 1  Q1I k 2kzI)

2 k=1 (118)
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h N 2

h~ Q12z dz=B12= QI2j,(k' -Zk-1)
2 k=' (119)

h N

f2 Q16z dz 1316 = 1 Q 6kz-z

2 k = 1 (120)

With the utilization of equation 82, it is readily seen that equations 116-120 reduce to the

classical elastic case when there is no frequency dependence.

Continuing this process for the moment resultants, the frequency dependent comrlex

general laminated plate theory reduced stiffness matrix can be determined. Since the

development is straightforward, involving only simple mathematical manipulations, all that

will be given here is the summary of the results in contracted notation.

N

Ajj q 41 (Zk - Zk-01
k= 1 (121)

N

B*Ii h~~k(-2_'
k= 1 (122)

N

k-=1 (123)

In matrix form, the above frequency dependent or complex reduced elastic constants are

used to relate the in-plane stresses to strains. The specific relationship is given as
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Nx(f) A1l*(f) Al2*(f) A 16* (f) B1l*(f') B 12* (f) Bl6*(f) 4-(f)-•

Ny(f) A12*(f) A22*(f) A26*(f) B 12*(f) B22*(f) B26 *(f) E(f-

Nxy(f) = A16*(f) A26*(f) A66*(f) Bl6*(f) B26*(f) B66*(f) Y0 (f)

MX(f) Bll*(f) B 12*(f) B 16*(f) DII*(f) D 12 *(f) D 16 *(f) cO(f)

My(f) B12*(f) B22*(f) B26*(f) D12*(f) D22*(f) D26*() Cy(f)-

Mxy(f) B16 *(f) B26*(f) B66*(f) D16*(f) D26*(f) D66*(f) K•x (f)

(124)

The Aij*, Bij*, and Dij* terms are funtions of the the Qij terms. The Qij terms are functions

of the elastic constants. This can be seen by using equations 83-85 with a uniaxial

composite laminate. Using the relationship given in equation 3 that the loss factor Ti is the

ratio of the imaginary to real part of the elastic moduli, and the development of Hashin(35)

which was given in equation 76, the relationship of the Qij's in terms of elastic constants

can be written as

QE;, (), EII(1 + i rlll (f))

(1-u 2 1u1 2) (1-0; 1 2 ) (125)

"1[2 E2 (f) .02, El (f) "021 E I (I + Tlf)

*- _0 *02 1 (126)

;2(f - E2 (f) _ E22 (1 + i T122 (M)

(1-U 21 U12 ) ('-u; 1 "u12 ) (127)

QQ6 (f) = Gjz(f) = G 12 (1 + i T112(f)) (128)

where the * denotes a complex value. Equations 125-128 will reduce to the classical elastic

case when there is no frequency dependence.
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In equations 125-128, all of the elastic constants can be readily determined through

various experimental procedures that have been discussed in Chapter 2, with the exception

of the complex Poisson's ratios. Since there have been no experimental techniques

identified to determine the complex Poisson's ratios, two assumptions will be made

concerning them. First, it is assumed that the Poisson's ratios are independent of

frequency. Secondly, It is assumed that they are real. The consequences of these

assumptions will be discussed in Chapter 6. There it will be shown that this assumption

results in only minoi differences in the resultant analytical response of the material.

These stiffness terms are the basic building blocks for the analysis of the frequency

response of a general laminated plate. Using this information developed for the

unidirectional material characteristics, the response of a general laminated composite

material can be determined using conventional tensor transformations. The transformed

reduced stiffnesses can be determined as

4 * 22 n24

Q11 (f) = m Ql ((f) +2mf) + 2 QQ (f) I + n4 Q2 (f) (129)

Q21 (f)2 Q12 (f) = m2n2[ Q*l (f) + Qý (f) -4 Qj," (f) ] + (m4 + n4 )Q12 ( (130)f)

4 2 22
Q22(f)= n Ql (f) +2m n2[QI2(f)+2Qý (f)I+ mI Qz2(f) (131)

Q16 = m3n [Qj1 (f) - Q2 (f) - 2Qý(f)] + m n3 [Q2 (f) - QL (f) + 2Qs(f] (132)

.3 *
Q26=m n [Qj1 (f) - Q*2 (0 - 2Q6s(f)] + m n [Q12 (f) - Q22 (f) + 2Q6(0] (133)
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Q.=m2n2[Q. (r)+ Q (f)-2Q•2(f)-2 Q (f)] + (m4+ n') Qý(f) (134)

where m is the cosine of (6 and n is the sine of (9, and (0 is the angle the fibers make to the

principle loading direction of the laminate. For the general laminate, the extensional,

coupling and bending stiffness matrices can be determined from the Qj terms. In contracted

notation, the explicit frequency dependence of Aij*, Bij*, and Dij* are defined as

N

Aj(O) A j + iAk*,(f) = (-Qj M (n)~ (hn -hn- 1)
k=-- (135)

N

Bj(f) B B+ iB (f) (f1 'T(f))(T -h2ii ~ ~ 22i t

k--_1 (136)

N
, _,V 1 ," , 0.,(r ,3 _.3,D.ij,,,) -- LDtij + iDij(Lr e, " d k,!•,i Q ,) 1 -U~)

MI= (137)

From the reduced stiffness matrix, the loss factor of a general laminated plate can be

determined. This is readily done by utilizing the relationship given in equation 3. The

relationship states that the loss factor is the ratio of the imaginary to the real part of the

complex moduli. Other investigators have utilized a similar development. In their work,

however, the frequency dependent loss modulus is not accounted for. Another assumption

that is made in their efforts is in the determination of the laminated composite loss factors.

Their development indicates thaL the effective loss factor in tension, for example, is given

as
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A1 1

A( (138)

where A", is the imaginary part ofA*lI and A',I is the real part of A*l (55). The

assumption that is being made here is that the effective stiffness of the laminate is given as

A, I + ,

E* At 1 +iA 1 1

h (139)

In actuality, the effective moduli is determined from the ABD inverse matrix. The inverse

ABD matrix takes into account the stress couplings that may occur from the various

orientations of the fibers used in the lamiri te. As such, the effective moduli is given as

• 1
EX = h (A'II + A*'1  ) (140)

Using this correct formulation of the effective extensional moduli of the composite the

material effective loss factor is given as

Al-1

xA1 l (141)

Similarly, the transverse modulds is again given in terms of the inverse ABD matrix as

h A22  (142)

Using the relationship for the loss factor from equation 3, the transverse loss factor is then

given as
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_A 2 2A22  (143)

In a similar manner, the other components of the inverse ABD matrix can be used to

determine the loss factor in shear, rjy of the laminate.

In the typical cantilever beam testing of a general laminated composite sample, the

effective bending stiffness will govern the beam motion. For the 00 and 900 composite

orientations, the stiffness of the beam in bending is equal to the modulus of the material in

that direction, or can be described as Ex. However, in the case of the general laminated

beam, the beam motion will be governed by the effective bending stiffness of the specific

construction. It has been shown analytically and experimentally that the effective bending

stiffness of a general laminated beam is given as (65)

Ecffcjvq =h3- 12
E 6., ., = TDj1 (144)

where h is the beam thickness. Following the same lines of reasoning as given above, in

complex notation, the complex effective bending stiffness is given as

12
Edf-riV% d.= -17D h ý D 1  (145)

With the effective bending stiffness determined, the loss factor as a function of frequency

can be determined as the ratio of the complex to real parts of the value, or

Eeffcrive m1(f)\

E d f ~ % ,.•(1 4 6 )
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where

Erf (f) =E + iEd-cjv, ~)(147)

For a general laminated beam, then, the loss factor can be analytically determined by

first determining the material complex elastic cioduli through cantilever beam testing over

the frequency range of interest. The comr lcx reduced stiffnesses can then be determined as

given above. Depending on the type of test method utilized, the longitudinal, transverse or

bending loss factor can then be determined using equations 141, 143, 146, respectively.

Although the use of the elastic viscoelastic correspondence principle has been

proposed for use with composites to predict the loss factor, the incorporation of the

frequency effect of the material constituents has not been attempted. The most probable

reason for this is twofold. Fir-st, there does not appear to have been a complete loss factor

characterization performed on any composite system, as was evideot from the discussion in

the Chapter 2. Typicall', the investigators reported a loss factor at a specific frequency.

The frequency of test was dependent on the specific geometry and material used. To carry

out a complete characterization is both time consuming and expensive. Secondly, the

mathematics of complex matrix manipulation is quite difficult and is not easily done by

hand. Matrix manipulation using computers has been feasible, using real variables.

However, the incorporation of complex terms into the matrix manipulations has until

recently been difficult, if not impossible. With the advent of symbolic manipulators such

as MathematicaTM, this type of manipulation can now be readily performed.



Chapter 4

DEVELOPMENT OF EXPERIMENTAL TECHNIQUE

The proposed analytical model requires as input the in-plane damping loss factors of

the composite, r111, T112 and "122. An experimental technique that can determine these loss

factors was designed and developed using various aspects of techniques that were

previously desci bed in the Chapter 2. One decision made in considering the design of a

technique was that only one testing methodology would be utilized. It was felt that this

would keep constant any errors associated with the test procedure.

There have been numerous techniques utilized to experimentally determine the

vibration damping loss factor of composites, as was previously detailed in the Chapter 2.

Of these techniques, those used most recently are the forced resonant vibration

technique(30,41) and the impulse technique(47,48,66), of which the impulse technique

appears to be the most widely .. :cepted. In the impulse technique, the specimen is normally

held in a cantilever beam configuration, and is excited via an impact near the clamped end.

The beam response is measured using either accelerometers or a noncontact eddy current

probe. From the beam displacement versus time information, the frequency response

function is determined. The data reduction scheme that is then typically employed to

determine the damping loss factor is the half power band width method.

116



117

The impulse technique uses a cantilever beam specimen configuration for loss factor

determination. To determine the loss factors 1111 and T122 for the composite, unidirectional

0( and 90" specimens, respectively can be used. To determine 1112 a specimen orientation

of +45" will be used as an initial estimate. These experimental values will later be used to

determine a more accurate estimate of 1 12 by using the analytical model along with these

experimental values to back calculate the shear loss loss factor. This will be discussed in

further detail in Chapter 6.

The manner in which the sample is supported is of vital importance to the accurate

determination of the material damping loss factor. Care must be taken to ensure that the

fixturing and materials used in the apparatus dissipate a minimal amount of energy. Losses

that can occur at the clamping area include frictional losses and dissipation by any interface

material used between the specimen and clamp block.

There are numerous technical reasons why the impulse technique has gained wide

acceptance for testing composites. First, all vibrational frequencies are excited when the

specimen is subjected to an impact. The fundamental frequencies and the various modes of

vibration can therefore be investigated using a single specimen. This can be accomplished

by determining the loss factor of the various modes of vibration for a single beam length or

by varying the beam length to obtain different resonant frequencies. Secondly, to minimize

external energy losses from such sources as friction at the clamped region or from

aerodynamic damping, beam tip displacements must be minimized. For low frequencies,

which are of major concern for various structural applications, placing the beam into

resonant forced vibration usually results in large tip displacements. The damping loss
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factor that is determined may be a combination of the material internal damping and external

losses. This information would therefore be of little use for design purposes. With an

impulse excitation, minimal force levels can still be used with resultant tip displacements

bei ig kept to a minimum.

The following will describe the experimental apparatus designed and developed for

the experimental determination of the damping loss factors for composite materials,

including both the fixturing and the hardware and software used for data acquisition. In

addition, the results of the experimental calibration of this system are reported. This testing

utilizes 2024 T-4 aluminum beams as the calibration specimen. The 2024 T-4 aluminum

was chosen because it has been well characterized experimentally and has been shown to

analytically follow Zener thermoelastic theory (26,62) for the damping loss factor as a

function of frequency (8, 63).

Experimental Apparatus

For vibration damping testing, there are two primary considerations when designing

fixturing for testing materials. First, it is necessary that the specimen be isolated from its

surroundings. No vibrational energy from external sources should be allowed to influence

the vibrational response of the specimen being tested. Accomplishment of this likewise

infers that the vibrational energy imparted to the specimen will not be, dissipated by the

fixturing due to an energy transfer from the specimen. Secondly, care must be taken to

minimize all other possible sources of energy dissipation so that the measured damping is

the material inherent damping loss factor. Two prevalent sources for external energy
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dissipation which should be minimized are frictional losses at the clamping egions(67) and

aerodynamic damping (30,37,41,68,69).

In order to isolate the specimen from the surroundings, the specimen fixturing was

attached to the load frame of a Sontag fatigue test machine, model SF-1U. This machine

consists of a 36 x 36 x 3 in. solid steel top attachment plate to which the components for

fatigue testing are attached. The entire system is isolated from the machine frame via four

springs, effectively isolating it from the surroundings. In addition, the mass of this support

system is several hundred pounds, which was experimentally shown to be not easily

excited by the impulse excitation, the vibration of the test specimens, or other external

energy sources.

The fixturing that was designed and fabricated for this program and used in

subsequent testing of the composite materials is shown in Figure 10. This consists of a

steel base plate, 12 x 16 x 1 in., which is bolted to the top plate of the Sontag machine with

four 0.75 in. diameter bolts. A solid aluminum breadboard is then bolted to this plate with

four scrzws. The breadboard consists of a 1 2 x 12 inch plate with 1/4-20 mounting holes

or a 1 inch spaced square pattern starting 1.5 inches from the edge. This breadboard

allows for easy accurate positioning of the eddy current probe. A 8 x 14 x 1.25 in. vertical

support plate is bolted to the 12 x 16 in. base plate at one end of the base plate. This

vertical support plate has two machined 12 inch long 0.75 in slots which are centered 6 in.

apart. A movable attachment block, which consists of a 7 x 1.25 x 1.25 in steel bar, is then

bolted to the support plate using two 0.75 in. bolts. Two 0.75 in. diameter holes are

machined into this attachment block to accept two tool steel guide rods 5 in. in length. A
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Vertical support block (8 x 14 x 1.25 in)

Attachment block (1.25 x 1.25 x 7.0 in)

- .. Tool steel guide rod

Clamp block (1.25 x 1.25 x 4.0 in)

Instrumented force hammer

Composite specimen
Eddy current probe

Steel mounting p!aw.c (12 x 16 x 1.0 in)

Figure 10 Schematic of the apparatus for testing the vioration damping loss factor of
composites using a vertically oriented cantilever beam.
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movable clamping block is then bolted to the attachment block. This consists of a 4 x 1.25

x 1.25 in. steel plate which is machined to accept linear bearings through which the guide

posts will pass. The use of the guide rods and linear bearings is to ensure uniform

clamping on the test specimens. By minimizing eccentric clamping of the specimen,

perturbation from the beam true modal response should be minimized. Test specimens

with widths up to 1.5 in. and of any thickness can be clamped by this fixture using two

1/4-20 screws.

The eddy current probe is positioned in proximity to the beam tip using an X-Z

vernier. The vernier is attached to the breadboard with four cap screws. This specific

vernier has a 0.5 inch travel in each direction. By repositioning the vernier at different bolt

locations on the breadboard, beams of any thickness can be interrogated with the eddy

current probe. It should be noted that a Plexiglas fixture, to which the eddy current probe is

fastened, was fabricated to attach the eddy current probe to the vernier. The use of

Plexiglas was required since the eddy current probe was unshielded and metallic structures

near the sensor can result in spurious displacement determination. A schematic of the entire

assembly/ is given in Figure 11.

Experimental Procedure

For damping loss factor determination, beam tip displacement versus time

information is required. The eddy current probe is used to measure the tip displacement.

This probe is electrically excited and outputs a voltage dependent on its distance from a

conducting medium. rhis particular probe can be used for both magnetic and non-magnetic
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SModally Tuned Conditioning
Amplifier

Force i-arnmerm PCB 4B0D06
PCB 2496

E---

Kaman 23,0-3U -

Displacement
Measuring System

B13'" FC-AT IC-

with DASH-16
Data Acquisition

F -Board
Interactive Laboratory

System Software (ver 6.0)I]

4 h Order Curve Fit os actr aculationusing Grapher Basic Program

Figure 11 Schematic of instrumentation for vibration damping testing
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materials. The probe has a measuring range of 0.120 inches with a resolution of 0.01% of

the measuring range. The probe must be calibrated before use. To accomplish this, it is

placed into a micrometer calibration tixture, Kaman part number 850854-001. Following

the calibration procedure, the output of the eddy current probe is adjusted to the

requirements of the test. The gain can be adjusted to optimize sensitivity for particular

tests. For this testing program, the probe was calibrated so that I volt was equal to

0.040 in. of displacement. Displacement vs. voltage information was obtained with the

fixture using increments of 0.005 in. A linear fit was then performed on the data shown in

Figure 12. This linear fit had a correlation coefficient of 99.98%. The linear fit of the

voltage vs. displacement data was used in the software written to determine the beam

vibration response.

In the vibration testing, the beam specimen response is normally recorded using an

FFT analyzer or a high speed A-D board. For this i'ivestigatior., a high speed A-D board

was utilized. This type of system required a minimal capital iavestment, approximately

$2,000 as apposed to approximately $50,000 for the FFT analyzer. In addition, the use of

the A-D board allows for maximum flexibility in system design and data manipulation. The

data acquisition board purchased for this program was a MetraByte Das.-16 A-D board.

This system has a maximum acquisition rate of 76 kHz, which was verified using the

output of a digital oscilloscope.

The specimens were excited using an impulse excitation from a modally tuned impact

hammer. This hammer is a PCB Piezotronics, Inc., Model No. 086B01 impulse hammer

with a 0-100 lb. force output. The hammer is supplied with impact tips of varying
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hardness. It was observed in the testing that for the higher frequencies, the harder tips

were required to ensure a reproducible tip displacement vibration.

The output from the eddy current probe and the force hammer are attached to the

MetraByte DAS-16 screw teiminal accessory board using BNC connectors. The accessory

board is connected to the DAS-16 data acquisition board installed in an IBM PC-AT. This

is a 16 channel high speed A/D interface with direct memory access (DMA). This system

has a 10 MHz on-board crystal-controlled oscillator to provide the time base. The system

can be set up to read voltage ranges of 0 to 10 volts, -10 volts to 10 volts, or -5 volts to

+5 volts. For this program the -5 to +5 volt range was used. The information is stored

and read in bits with a range of -2048 to 2047 bits corresponding to -5 and +5 volts,

respectively. The system resolution, then, with the eddy current probe calibration set to

0.04 in. per volt, is 9.78 x 10' in.

The DAS-16 A-D board is controlled by computer programs which are written in

basic. There are numerous call routines available that activate various functions of the

board. The program that was written to acquire the beam tip displacement and impulse

force excitation utilized many of the capabilities of the hardware. The program was written

to be interactive, prompting the user throughout its execution. Initially, the user is

instructed to attach the instrument output leads to the appropriate input positions on the

accessory board. To allow for the positioning of the eddy current probe to its calibrated

zero, the program initially monitors only the eddy current probe output. A single

positioning of the probe is not possible since there are slight variations in the thickness

from specimen to specimen and specimens of different thickness were used throughout the
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program. To allow for this positioning, the program is set up to monitor the output of the

eddy current probe continuously at an acquisition rate of 76 kHz. The computer routine

records this output as bits in sets of 1266 data points using direct memory access. These

values are summed and averaged and output to the CRT screen. The user views this output,

again in bits, which is updated 4 times a second. By adjusting the x positioning vernier of

the eddy current probe, the output is reproducibly kept to a variation of + 0.1 bits.

After this positioning, the program is automatically set to read two channels, which

correspond to the output of the eddy current probe and the impulse hammer. The program

then allows the user to choose the acquisition rate. It also allows the user to choose the

number of data points to record, up to a maxirnumr of 12000. Choosing an acquisition rate

which is greater than 20 times the resonant frequency of the beam using the maximum data

set size captures only a portion of the beam vibration response. This results in a loss of

resolution in the FFT. The ability to vary the acquisition rate allows the user to zoom into a

particular frequency range. In order to prevent aliasing, or distortion of the Fourier

transform (70), however, the acquisition rate should be at least 8 times the frequency of

interest. This is shown through the calibration testing that was performed.

The are several trigger routines available for the board. The trigger that was settled

on was a manual tigger. The user is instructed to hit any key on the computer keyboard to

activate the program to continue execution and record the output of the instrumentation.

Typically what is done then is to hit the enter key on the keyboard and strike the beam with

the hammer in quick succession. At this point the program records the specified number of

data points to memory.
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The data is then transferred from memory, converted to actual displacement and

force, and stored as an array. The user then has two graphic options. First, the data can be

plotted to the CRT screen as the log of the displacement versus time and force versus time.

This first option allows the user to make a quick check on the amplitude decay to ensure

qualitatively that there are no secondary sources of energy dissipation. This would be

indicated by the appearance of two distinct slopes of the peak height values from the log

displacement versus time plot. Figure 13 is an example of the log displacement versus time

plot from the vibration response of 2024 T-4 aluminum subjected to an impact excitation.

The second option allows a screen plot of the displacement versus time. This ensures

proper positioning of the eddy current probe by viewing the symmetry of the beam

response about the zero displacement. Figure 14 shows a representative displacement

versus time plot of the same sample.

The user can likewise continue through the computer routine without plotting the

data. At this point, the program prompts the user for the file name and address where the

data will be transferred. The data can be transferred as the digital stored information, or it

can be stored as actual displacements. An option in the program allows the user to input the

specific scaling factors obtained from the calibration of the eddy current probe. This is

useful if different probes are used. The program then creates and opens the storage file and

transfers the appropriate data there. In addition, the program places a header in the data file

that includes the acquisition rate and interval between data points. An annotated copy of

this data acquisition program is given in Appendix A.
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Figure 13 Log displacement vs. time curve for 2024 T-4 aluminum.
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Figure 14 Displacement vs. time curve for 2024 T-4 aluminum.
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To perform the Fast Fourier Transform (FFr) on the data, the Interactive Laboiatory

System software from Signal Technologies Incorporated is utilized. The displacement vs.

time data is first read and stored as a sample file using tie ILS software. The system

partitions this data into records of up to 2048 data points. The size of these data sets used in

the inveF ations that follows w-nre either 512 or 2048. 'he ILS software is then used to

perform the FFT on any record and the information is stored to a file. The software is then

used to transfer the FFT information as an ASCII file which can tx manipulated and read

by various other software routines. The information that is transferred includes the

frequency, dB magnitude and phase for each data point.

The FIT that is obtained is the net vibration amplitude at various frequencies, or the

frequency response of the time domain signal. When this net vibration amplitude is plotted

vs. frequency, seres o f0 r.. es le-A peak ccur. Thess pe-ks correspond to the resonant

frequencies of the beam. As long as the resonant peaks have negligible overlap, the loss

factor for the material can be determined using the half power band width method which

was previously given as equation 3 (1). Figure 15 shows the FFT for the beam vibration

shown in Figure 14. It is readily seen that no overlap occurs in any of the resonant peaks.

It is not intuitively obvious how damping loss factor determination can be determined

using the half power band width. To convince the reader that this methodology is valid,

an analytical development of the determination of the loss factor using the half power band

width method for a cantilever beam is given in Appendix B. This is derived using the

general equations of motion of a beam.
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In order to determine the loss factor, then, the peak height and the half power points

need to be determined. Initially, a graphical representation of the dB magnitude of the FFT

versus frequency is obtained within a narrow band of the calculated resonant frequency.

This is accomplished using a commercially available graphics software called Grapher,

written by Golden Software. A curve fit is performed on the digital data on each side of the

resonant frequency. The values which correspond to the left and right side of the peak are

readily identifiable by a 27c phase shift as is shown in Figure 16. Through experimental

investigations, it was determined that a- fourth order polynomial using orthogonal

coefficients provided the best fit to each side of the peak height values. The orthogonal

coefficients and the recursion factors for the data which describe each side of the resonant

fi'equency are recorded and written to a file. The curve fits for the sample data set shown in

Figure 16 are given in Table 10.

The specific fourth order equation. with orthogonal coefficients used for the curve fit

routine is given as follows

y = B, +(x-oc2)[B 2 +(x-CL 3)(B 3 +(x-a 4)(B4 +(x-°x5)B5) - N34 B5 )-

133(B4 +1x -a5 ]B5 )A - 032 [B3 +(x -(X4 )(B4 +(x -cX5 )B5 } -034 B51 (148)

where the Bi wie the orthogo;ial coefficients, and the ai and bi are the recursion factors.

The value of x used in equation 148 is calculated from the experimental frequency data

using the following equation

X =( Xirput - Xmid) XscaI (149)

where Xinput is a specific frequency and the Xmid and xsal are scaling factors for the original
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Table 10: Fourth order polynomial fit statistics for peak values from the FFT given in

Figure 16.

LEFT SIDE OF PEAK

Orthogonal Recursion Factors

Dge Factors Alpha Beta

0 -3.6147 0 0

1 1.24339 -6.000321833 1.55585

2 0.458577 0.000065269 1,22238

3 0.161536 0.00(r107365 1. 14Z5

4 0.0916427 0.000147984 1.07872

RIGHT SIDE OF PEAK

Orthogonal Recursion Factors
Degree Factors Alpha Beta

0 -3.86925 0 0

1 -1.39188 -0.000219959 1.52375

2 0.496194 -0.000141) 79 1.20287

3 1 -0.234782 0.000124755 1.13346

4 L 0.122776 0.000279605 1.08324

frequency data that is determined using the fourth order polynomial curve fit routine of

Grapher.

The file that was created with the values of the orthogonal tactors, and the alpha and

beta recursion factors is then used as inpu: to a basic computer routine which was written

for this dissertation. This program determines the dB magnitude of the intersection of the
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two curves, i.e. the left and right curves for the resonant frequency peak, and the

frequencies corresponding to the half power points for the specific curves. The half power

points are the values of the frequency that correspond to -3dB of the magnitude of the peak

height value for the resonant peak. The loss factor is then determined using equation 3, or

as follows

Af,
=1 (3)

where Af, is the difference in the frequencies at the half power points and f, is the resonant

frequency calculated as the intersection of the two curves. An annotated version of this

program is given in Appendix C.

A schematic of the instrumentation and computer routines used to determine the

damping loss factor of the cantilever beams was previously given in Figure 11.

Calibration of Experimental Apparatus

In order to calibrate the system and to determine the accuracy and precision of the

procedure, a material with a well characterized damping loss factor over the frequency

range of interest was tested. The material used here, as well as by numerous other

investigators, was 2024 T-4 aluminum. The materials loss factor can be analytically

determined at any frequency using Zener Thennoelastic Theory. In addition, since the

magnitude of loss factor of this material is very low, experimental replication of the

analytical results will ensure that extraneous sources of energy dissipation are minimized.
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Initially, beams were machined from 0.125 in. plate to specimens with widths of 1.0

inches and lengths of 12 inches. The 12 inch lengths were machined parallel to within

0.001 in. to minimize any errors in the test results. After the initial vibration tests, one end

of these beams was machined to a specific length. By changing the beam length, the first

resonant frequency was changed. By testing beams of various lengths, then, it was

possible to characterize the loss factor of the 2024 T-4 aluminum over a frequency range of

10-300 Hz.

Beam lengths to be used to obtain a specific frequency in the calibration were

analytically determined. The first resonant frequency of a cantilever beam can be

determined usinpg thhe following equation (30)

= /EIgfi ,g x Ci

WL (150)

where E is the bending stiffness, I is the moment of inertia of the beam, g is the

acceleration due to gravity, W, is the weight per unit length, L is the beam length and Ci is

the constant for the ith mode of vibration.(1)

As was previously mentioned, there are two sources of energy dissipation that must

be minimized to ensure that the damping loss factor experimentally determined is of the

material internal damping and not from external dissipation sources. These sources are

aerodynamic damping and frictional losses at the clamped region of the beam.

A study was conducted to determine explicitly the contribution of the aerodynamic
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damping for this experimental program. The aluminum calibration beam was excited with

increasing force levels to obtain increasing tip displacements. The results of the testing

indicated that no variation in loss factor was obtained in the range of 0.006 to 0.012 in

(67,7 1). Two other investigations have shown that aerodynamic damping could be

minimized if tip displacements were kept less tnan 30% of the specimen thickness.(41,69)

Baker et al (72) conducted an extensive investigation on the effect of air damping on

beam vibrations. Thin metallic beams weie tested in both air and under vacuum. From

their work, they conclude that as vibration amplitude is decreased, the damping due to air

becomes less, but never zero. Using their analysis to estimate the air damping which

results from the beam tip amplitudes obtained in the calibration study for this program, the

additional damping from aerodynamic sources wouid be approximately 5 x 10 -4. Since this

value is within the experimental accuracy of the testing procedure, it will be assumed that

the measured loss factor is from material damping.

To minimize aerooynamic damping in this program, loss factors were only

determined for samp!es where maximum tip displacements were less than .±0.012 in. This

represents a displacement less than 11% of the total beam thickness. This displacement

level falls within those recommended to ensure a minimal contribution from aerodynamic

damping.

The second source of energy dissipation that can be controlled and should be

minimized are the frictional losses at the clamped region of the beam. Aa investigation was

conducted where various materials were placed between the specimen and the clamping
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block. These materials included tapered aluminum clamping blocks, tapered fiberglass

blocks, fiberglass fabric reinforced polyurethane sheet, fiberglass fabric reinforced Teflon,

and no clamping block. These systems were positioned between the sample to be tested

and the clamping blocks. The specimens were tested using the procedure described above.

The experimentally determined loss factors were compared to that analytically predicted

from Zener Thermoelastic Theory. The clamping material which resulted in the lowest

experimental value of the loss factor for the beam was the fiberglass fabric reinforced

Teflon sheet. The loss factor determined using this material also exhibited superior

correlation with theory. Since all other clamping materials gave results that were higher

than anticipated, it was assumed that they were providing additional source for energy

dissipation. The material that was used for the rest of the testing was therefore the

fiberglass fabric reinforced Teflon sheet.

In addition, the effect of clamping pressure on the loss factor was determined by

determining the loss factor as a function of the clamp block bolt torque. A clamping force

that is too small will result in a sliding action, causing high frictional losses. A clamping

pressure that if too high may cause damage to the specimen. This damage will result in

higher loss factors either from stress concentrations or from friction at the damage sites.

The clamping pressure that resulted in consistent results with no degradation to the

specimen was 10 ft-lb.

To conduct a test, a specimen is first placed into the test fixture. The eddy current

probe is positioned so that its center was approximately 0.5 in. firom the specimen end and

in the middle of the specimen width. The probe distance from the beam is then adjusted,
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while monitoring the output, until the voltage output is near zero.

Beam lengths were varied so that the first resonant frequency was varied from

approximately 38 Hz. to 300 Hz. The test procedure given above was followed and the

loss factors determined. The results from the testing are given in Table 11.

The results of the test program were compared with the predictions determined using

Zener thermoelastic theory. The 2024 T. 4 aluminum beam specimens have been shown to

follow predictions for the loss factor given by this theory by numerous investigators.

(30,41,47,68). The loss factor determined using Zener thermoelastic theory was

previously given as

x2ET (o T
=( + 02") (6)

where ax is the coefficient of thermal expansion, E is the bending stiffness of the beam, T is

the absolute temperature, C is the heat capacity, (0 is the angular frequency and t is the

relaxation time for the heat flow across a beam of rectangular cross section. The value of t

is determined by

h C

712K (7)

where h is the beam thickness and K is the thermal conductivity of the beam material. The

values used for input to equations 6 and 7 for the determination of the damping loss factor

for the aluminum calibration specimen were obtained from the literature. The specific
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Table 11: Experimentally determined vibration damping loss factor results for 2024 T-4
aluminum tested in cantilever beam configuration.

Loss Factor
Calculated Experimental Experimentally from Zener
Resonant Resonant Determined Average Thermoelastic

Frequency Frequency Loss Factor Loss Factor Theory
(Hz) (Hz) (X 10-4) (X 10-4) (x 10-4)

38.563082 19.66
38.85+1.40 38.57834 21.91 22.34 22.21

38.58244 25.45
49.0575 22.12
49.0637 21.99
49.0639 22.79

48.91+1.76 49.0684 20.29 22.74 22.94
49.0706 24.85
49.0909 23.02
49.5670 22.57
77.17365 20.30
77.18895 21.24

78.29±2.82 77.20165 18.52 20.23 20.70
77.2040 20.85
77.25243 20.25
80.1034 20.00

80.38+2.89 80.1891 21.28 20.54 20.04
80.2092 19.99
80.2496 20.88

96.82+3.49 95.328 18.44 18.52 18.62
96.47 18.60

197.2326 11.85
195.20_.+7.03 197.2516 11.35 11.09 10.90

197.1793 10.08
198.1793 9.84

199.73+7.19 198.2263 8.62 9.59 10.64
198.5398 10.31 _---

21T.628 8.28
223.92+8.06 219.645 8.59 9.08 9.61

219.856 9.35
220.041 10.09
"305.1664 8.00

312.08+11.24 305.1771 7.69 7.58 7.05
305.1800 5.83
305.1902 8.80
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values used are given in Table 12.

For each of the beam lengths used in the testing, the first resonant frequency was

analytically determined using equation 149. These results are compared with those

determined experimentally in Table 11. All of the experimental values of the first resonant

frequency are within experimental error for the analytically determined values.

Also given in Table 11 are the experimentally determined loss factors. For

comparison purposes, the anticipated loss factor of the specimens using Zener

thermoelastic theory are given. The experimental loss factors are within 2.5% of those

analytically anticipated for frequencies less than 196 Hz. At frequencies greater than

196 Hz., the experimental results were within 10% of those anticipated analytically.

Table 12: Input values used in equations 3 and 4 for the determination of the damping loss
factor for the aluminum calibration specimen using Zener thermoelastic theory.

Input Coefficient Bending Temperature Heat Thermal

Parameter of Thermal Stiffness (absolute) Capacity Conductivity

Expansion

Symbol cc E T K

Value 23.2 X 10-6 73.097 298.72 2560511.2 126.47(2iri..n ) GPa (°K) m K)kg
aK C sec3 °K I

______ _____ (_K)-j-----r
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The results from the testing are plotted along with the analytical curve of the loss

factor from Zener thermoelastic theory in Figure 17. In this figure, the solid curve is the

analytically determined values of the loss factor using equations 6 and 7. A fourth order

curve fit was performed on the experimental data to determine the degree of fit of the testing

at frequencies between those at which tests were conducted. A plot of the curve fit, also

given in Figure 17 shown by the dotted line, shows excellent agreement with the plot of the

analytically determined values of the loss factor. As can be seen from the plot, the curve fit

for the data matches the results predicted by Zener therrnoelastic theory to within 2% in the

range for which data was taken.

The experimental apparatus that was designed for determination of the damping loss

factor for materials in the cantilever beam configuration accurately determines the damping

loss factor with a high degree of precision. Resonant frequencies determined from curve

fitting of the frequency response function are within the error of the analytically determined

resonant frequencies. The variation in discrete values of the loss factor at a specific

frequency have variations of less than 14% with the exception of the data at 312 Hz. where

the spread was 22%. The anticipated trends in loss factor for the 2024 T-4 aluminum are

determined to within 2% through appropriate curve fitting of the data compared to Zener

thermoelastic theory for frequencies from 33 to 100 Hz, and less than 5% for frequencies

between 100 and 312 Hz. Secondary sources of energy dissipation have therefore been

minimized.

Corrparison of these results to the calibration tests of other investigators should be

nod. Typically, thei" calibration is performed at frequencies on the mnonotonically
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decreasing portion of the analytical curve. In additicn, the range of fiequencies tested are

minimal, showing little variation in the magnitude of the loss factor with frequency.

Finally, the scatter in their data would indicate that the loss factor at the frequcncic: tested

are statistically eqtuivalent.

An experimental technique 'has been designed and developed for determination of the

vibration damping loss factor of composites. The technique utilizes a cantilever beam

specimen oriernted vertically to minimize eccentric type loads dning vibration. An impulse

excitation is utilized, provided by an instrumented impact hammer. The beamn response is

measured using a noncontact eddy current probe. Utilization of a Teflon impregnated glass

in i de iitaci ial 1xiweeii ti, uc pe•l•xmf, aud the clamp block has % sh.. to .... sl to ;

frictional losses. Using a maximum torque of 10 ft-lb oil the two bolts used to clamp the

specimen has been shown to result in consistent less factor results and causes no damage to

the specimen. The apparatus was calibrated using a well characterized material, 2024 T-4

aluminum. The results from the calibration testing produced results which were withir. 5%

of tie analytically determined values using an appropriate curve fit to the data. The

variation in the loss factor at any specific frcquency tested was less than 14%, wiLh the

exception of the data at 312 Hz, where the spread was approximately 22%. ThM

experimentally determined resonant frequency using the curve fitting routine for the half

power bandwidth data reduction methodology was within 3% of the analytically determined

value. This apparatus was then utilized for the testing of the composite materials for this

research.



Chapter 5

DEVELOPMENT OF A ROBUST TESTING METHODOLOGY

Two material systems were investigated as part of this research. These included S-2

glass/3501-6 epoxy and AS4 graphite/3501-6 epoxy. These two composite systems were

chosen because of their differences in material constituents. The fiber characteristics of the

graphite and glass are significantly different. The glass is an isotropic fiber whereas the

graphike is highly aniisotropic. Carbon fibers are composed of long ribbons of turbostratic

graphite oriented more or less in the fiber direction (73). These ribbons are grouped

together in stacks about 20 angstrom thick (73). The normals to the basal plane of the

stacks are randomly oriented perpendicular to the fiber axis, i.e., diffraction patterns of

carbon fibers have fiber texture. Consequently, carbon fibers have high stiffness and

strength only in the fiber direction, in which carbon-carbon covalent bonds can bear the

load. The turbostratic graphite ribbons are held together by van der Waals bonds, resulting

in low strength and stiffness transverse to the fiber axis.

All testing in this investigation is performed at room temperature, approximately

750 F. At room temperature, the polymer material is actually considered to be glassy.

Here, the amorphous chain conformations are frozen into a rigid network, yielding a high

modulus and low loss factor (1). Although the loss factor is considered low compared

with that achievable in the glass transition region, these linear viscoelastic materials have

been showr to have loss factors more than an order of magnitude greater than structural

145
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metallic materials. When used in the composite form, even though the polymeric material

typically constitutes only about 40% of the composite by volume, the matrix material

should provide a significant contribution to the material damping loss factor. As such, the

polymeric materials used as the matrix for organic matrixý composites can be considered to

have a high vibration damping loss factor.

Material damping can be defined as any material characteristic which allows for the

conversion of mechanical energy into heat. In conventional metallic systems, this energy

dissipation occurs through the relaxation of temperature across the specimen which is

caused by internal friction. For composite materials, there are numerous sources of energy

dissipation like the viscoelastic response of the material constituents, such as that found in

polymer systems, thermoelastic conversion of mechanical energy into heat, frictional losses

which can occur at the fiber marinx iteidiace, and energy dissipation caused by stress

variations that result from the nonhomogeneous material characteristics of the composite.

Although polymer matrix composites are normally considered to be linearly

viscoelastic, most experimental investigations report loss factor for a specific -. trerial or

larninate configuration without mention of the frequency at which the material was tested.

Through the investigation of the loss factor as a function of frequency, the viscoeiastic

characteristic of the glass and graphite fiber reinforced epoxy matrix composites is

determined.

In ihe previous chapter, the design -and calibration of the test apparatus was

presented. In the initial investigation of the vibration damping testing of composites, it
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became evident that a modification to the data analysis procedure was required because of

the higher damping loss factor of the composites being tested. This chapter will discuss the

the details which made it necessary to modify the analysis procedure previously used to test

the 2024 T-4 aluminum. The proposed procedure that follows describes a methodology for

minimizing the effect of environmental sources of energy dissipation in order to provide a

more accurate measure of the material loss factor. This procedure is being proposed as a

robust testing methodology for the vibration damping loss factor determination of

composite materials.

Composite Material Specimen Preparation

Two material systems were tested as part of this research. They were both obtained

in prepreg form from the Hercules Corp. All specimens were fabricaited in-house using the

manufacturers recommended cure cycle using the autoclave vacuum bag procedure. This

process resulted in samples which had fiber volume fractions of 63%. The specific

procedures followed are included in Appendix D for the reader's information.

Machining of the specimens was perfomied using a diamond-impregnated cutoff

wheel mounted on a milling machine. This procedure was followed to minimize damage to

the composite specimens prior to testing. This is important since it has been previously

shown that any damage that may be present in the composite is a potential source of energy

dissipation through friction that will occur at the interface (20-22,36). In addition, samples

were stored in a desiccant-flied enclosure in the interim between specimen fabrication and
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testing. This was done to ensure that the samples were in the same moisture equilibrium

state prior to testing.

Specimen Design and Testing: Elastic Modulus

In order to implement the analytical model to determine the loss factor of a general

laminated composite material, the material elastic constants and loss factors need to be

determined. To determine the elastic constants, there are conventional, well established

procedures which are typically utilized. Specifically, the ASTM test methodologies were

utilized. To determine El, E2, V'12, and V21, unidirectional composite panels were made

having thicknesses as specified in the ASTM D3039-76 test procedure. After fabrication,

these panels were nondestructively inspected using a J.B. Engineering C-scan immersion

tank with software control being provided by Infometrics Test Pro system. In addition,

specimens were cut from the scrap ends of the fabricated plate and destructively tested to

determinc fiber and void volume fractions. To determine the fiber and void volume, a

different test procedure was necessary for the two composite materials used in this

program. For the AS4/3501-6 graphite epoxy, the ASTM D3171-76 Fiber Content of

Resin-Matrix Composites by Matrix Digestion procedure was used on the tag end

specimens for each plate. For the S-2 glass/3501-6, the ASTM D2584-68 Ignition Loss of

Cured Reinfoiced Resins test procedure was used. In all cases, the fiber volume fraction

was approximately 63% with void content of less than I%.

Specimens were cut to widths and lengths in accordance with ASTM D3039-76. The

specimens were instrumented with Micromeasurements 0/90 strain gage ;, gage type
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EA-06-125TQ-350. These specimens were loaded in tension using a Baldwin Universal

Test machine using a cross head loading rate of 0.05 in/min. The strain/load information

was digitally recorded using a MetraByte Das-8 A-D data acquisition board installed in an

IBM PC. El is determined from the slope of the linear fit of the longitudinal stress vs.

strain response. To determine v12 , the longitudinal vs. transverse strain was graphed for

each specimen. A least squares linear fit was then performed on each curve.

For determination of E2 and v2 1, the same procedure was utilized. In this case,

however, the unidirectional panel had its fibers oriented transverse to the loading direction.

Again, 0/90 strain gage rosettes were utilized so that both E2 and v2 1 could be determined.

These values were determineo using the same test procedure and data analysis reduction as

was given above.

For determination of G12, the ASTM D3518-76 test procedure was followed. Hcre,

a ± 450 specimen was fabricated and instrumented with the 0/90 strain gage rosettes. The

specimen is loaded in tension and the stress strain response recorded as previously

indicated. The shear strain is obtained from the difference in the longitudinal to transverse

strains and the shear stress is given as one-half the load divided by the cross sectional area

of the specimen. A linear fit is then performed on the initial portion of the shear stress

versus shear strain curve to determine G12.

The test results of the mechanical properties are given in Table 13. It should be noted

that the information presented is the average of 5 tests for each property indicated in the

table.



150

Table 13: Elastic properties of S-2 Glass/3501-6 and AS4/3501-6

MATERIAL TEST METHOD CONFIGURATION PROPERTY EXPERIMENTAL
.___ ,- VALUE

AS4/3501-6 ASTM D3039-76 [018 El 20.95
(Msi)

AS4/3501-6 ASTM D3039-76 [018 V12  0.305

AS413501-6 ASTM D3039-76 [90120 E2 1.70(Msi,)
AS4/3501-6 ASTM D3039-76 -[9]20 V21 0.0203
AS4/3501-6 ASTM D3518-76 L+4518S G" 0.87

(Msi)

S2/3501-6 ASTM D303976 [0]8 E1  8.39
(Msi)

S2/3501-6 ASTM D3039-76 [018 V12 0.264

S2/3501-'6 ASTM D3039-76 [90124 E2 2.88(Msi)
S212" '-6" ASTM D3039-76 [90]24 V21 0.09 13

S213501-6 ASTM D3518-76 L+4518S G12 0.885(Msi)

•Sy,.nen Design and Testing: Loss Factor

The methodology that is used to determine the loss modulus of the composite is by

initiah'y determining the matei.al damping loss factor using the apparatus which was

described inj Chapter 4. Using the relationship previously given in equations 5 and 76, the

loss modulus can then be determiaed as

EiJ(f) = 1iJ(f) Fij (151)

where it should be noted that the storage modulus is assumed to be independent of

frequency. Since it is also assumed that the Poissons' ratios are. real and frequency
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independent, a complete characterization of the loss modulus is possible by determination

of Ti 11, 1122 and TI12. This will be accomplished by utilizing 0' and 90' unidirectional beam

specimens and _+45" angle-ply beam specimens.

The approximation for tie tunidirectional specimens should be valid. For the

unidirectional specimens subjected to a bending moment, there is no in-plane shear strain

resultant. Since the material is linearly viscoelastic, the material characteristics are

independent of stress or strain amplitudt. As such, the strains occurring in the material are

the axial swtin caused by the bending moment and the transverse strain which results from

the Poisson effects. In addition, the axial modulus and the effective bending stiffness

determined using equation 144 are equivalent. The difference in the two specimens is the

through-thickness shear strains that occur as a result of a bending moment which are absent

from an application of an axial load. Since the bending moment is small, due to the

restriction placed on the rmaximum tip displacement allowed, the contribution to damping

will be assumed to be minimal.

For the +45' specimen subjected to a benaing moment, axial and tansverse strains

are present in addition to the in-plane shear strains. As such, the loss factor determined

using this spi-cimei has contributions from the varicus strain components. A more

accurate estimate of the in-plane shear loss modulus can be obtained, however, using the

experimental values of the loss factor determined using this specimen and the analytical

model which was developed in Chapter 3. As such, this specimen orientation is used to

obtain frequency dependent loss factor measurements. Details on the calculation of the

in-plane shear loss factor will be provided later in this chapter.
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Modificaio of the Data Reduction Scheme

The testing methodology utilized for the loss factor determination of the 2024 T-4

aluminum specimen was initially utilized to determine the loss factor for the composite

materials. To summarize, this procedure utilized a cantilever beam specimen which was

excited with an impulse excitation using an instrumented force hammer. The beam

response was measured using a noncontact eddy current probe. The data acquisition rate

was varied to be at a minimum 8 times the first resonant frequency of the specific beam

length tested. The beam tip displacement vs. time was digitally recorded using a PC based

A-D converter to a sample size of 2048 data points. The loss factor was then determined at

a particular frequency using the half power band width method.

The initial testing was conducted on the 900 S-2 glass/epoxy material. Five beams

were utilized for each test length. The damping loss factor information was desired in the

frequency range up to 1000 Hz. Oaly the first resonant frequency was utilized for loss

factor determination since it was unknown what effect the different modes of vibration

would have on the resultant loss factor. To obtain different frequencies to characterize Lhe

frequency dependence of the damping loss factor using beams with the same width and

thickness, it was necessary to test beams of different length. To minimize sources of errors

in the determination of the loss factor, one set of beams was used for the entire series of

tests. After tests were conducted usirng a particular beam length, i.e., a specific frequency,

they were cut to the next desired length and tested.
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Initially, using the longer beam lengths, the beam response appeared similar to that of

the aluminum calibration specimen. However, as the beam length became shorter, on the

order of 5.0 in (12.7 mm), the beam displacement versus time response began to decay at a

much higher rate, an indication of the higher damping loss factor of the specimen. In fact,

at this beam length, using a data acquisition rate of 10 times the first resonant frequency of

the beam, the tip displacement became unmeasurable, or was within the noise of the

system, near the end of the data acquisition.

This type of decay in vibration amplitude to an unmeasurable value did not occur in

the calibration of the apparatus using the 2024 T-4 aluminum specimens. The displacement

vs. time curves that were analyzed typically had displacements which remained greater than

+ 0.002 in. for the complete data set being analyzed. For the composite specimens,

although the initial beam displacements were greater than that of the aluminum, in many

cases the final beam displacements recorded were within the noise of the data acquisition

instrumentation, less that + 0.001 in. The reason for this is that the damping of the

composite specimens are significantly higher than that of the aluminum. The question !hat

arose was, "What effect does the incorporation of these nonmeasurable tip displacements

have on the determination of the damping loss factor ?"

This was addressed by comparing the loss factor which was calculated with and

without the incorporation of the very low amplitude vibrations. For the purpose of clarity,

the discussion that follows will be limited to the 11.0 and 5.0 in (27.9 and 12.7 cm) 900

S-2 Glass/3501-6 beams.
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Figures 18 and 19 show the displacement vs. time information that was taken for

cantilever beams which had an unsupported test length of 11.0 and 5.0 in (27.9 and

12.7 cm). The data acquisition rate used for these two specimens was 250 and 1000 Hz.,

respectively. These rates were chosen since they are greater than 8 times the first resonant

frequency of the beams. The theoretical resonant frequency of the beams was 14.5 and

70.1 Hz. The initial maximum tip displacement for both beams are approximately the same

in both cases, about 0.023 in (0.6 mm). In each case, there are 2048 data points shown.

Because of the higher resonant frequency of 12.7 cm. beam, the time interval is much less

than the 27.9 cm. beam. As a poiit of reference for each specimen, vertical lines have been

placed in Figures 18 and 19 which indicate the location of each 512 interval of data points.

In typical FFr analysis using conventional FFT analyzer equipment, the user can

control the sensors' input to the analyzer, but little else. The acquisition rate is

automatically controlled, as well as the number of data points that will be used for the FFI"

analysis. In Figures 18 and 19, there is an obvious variation in the rate of decay of the

beam tip displacement from the first 312 interval to tbe last. It should also be noted that in

the case of the 5.0 in (12.7 cm) beam, the maximum tip displacement for the last 512 data

points is on the order of 0.0008 in (0.02 mm). In this range, the measured tip

displacements occurring from the vibration decay may be lost in the noise of the electronic

signal. If there is no decay in the tip displacement amplitude, the loss factor that would be

calculated using this data only would be zero. This can be readily seer by considering the

loss factor as calculated using the log decrement method, given in equation 2. If this

portion of the data is included in the calculation of the loss factor for the specimen, the

resultant average loss factor would be lower than the actual material loss factor. This

characteristic wi!l later be shown to occur. This problem can be reduced by utilizing an
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increased data acquisition rate, so that the maximum number of data points can be used in

the FFT analysis. However, resolution is lost in doing this by reducing the capability to

zoom into an appropriate frequency interval so that an accurate characterization of the half

power band width can be obtained.

Characterization of the Effect of Vibration Amplitude on Damping Loss Factor

Initially, the damping loss factor for 5 specimens of each beam length was determined

using 2048 data points using the procedure described in Chapter 4. Each data set was then

divided into 4 subsets, containing the four successive 512 data points. The loss factor was

then determined usiag each of these 512 data points which made. up the initial 2048 data

point set. The purpose of this exercise was to determine if the loss factor varied with tip

displacement. In each interval, the magnitude of the stresses that the beam is subjected to,

the frictional loss at the clamped end, and any variation in the aerodynamic damping will be

a function of tip displacement which may affect the calculated material loss factor.

"Within each 512 interval, there is a decay in the beam tip displacement as a function

of time. For comparison purposes, it was decided to deterrmine the maximum beam tip

displacement in each of these intervals. In the graphical presentations that follow, it is this

maximum value of tip displacement in elch of these intervals which will be used.

Figure 2 0 shows the dB m--.gnitude FFT vs. frequency for the 11 inch 90.'

S-2 glass!3501-6. The foL: curves are the dB magnitude. FFT for the four consecutive 512

data sets. The loss factor is detenrined directly from these curves. Several features are
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evident. First, the first resonant frequency of the beam is evident b,)- the large peak around

15 Hz. Secondly, the second mode is evident on the first 512 data point sets at a

frequency of atout 90 Hz but becomes unresolvable for the latter three sets. The reason for

this is that tht higher modes have a higher loss factoi, and they have been damped out in

that time interval. A third feature that shows up in all of the curves is a peak around 23 Hz.

This peak is due to the excitation of the fixture. This resonant frequency of the fixtuie was

determined following siriilar procedures as was given in Chap:er 4. It is seen that the peak

at this frequency is very sharp, indicating that it contributes little to the damping of the

specimen. 7his signal can be reduced but not e1iminated. The magnitude of this peak is

dependent on the amplitud.e of vibration of the specimen and the resonani frequency of the

specimen. As the resonant frequency of the specimeu becomes further away from the

resonant frequency of the apparatus, the apparatus does not become excited. For the

testing of the other specimen lengths, the peak height at 23 Hz was negligible. Even at this

low frequency, it shouli also be noted that the response of the fixture does not overlap the

beam response. As such, it shou'i not affect the determination of the loss factor of the

composite sample (1).

Figure 21 sows the damping loss fastors determined using the procedure given

above for the five 11 in. (27.9 cm) specimens. Two distinct sets of data are shown. The

five individiial triangular points with loss factors of approximately 65 x10-4 and tip

displacements greater than 0.02 in. are the loss factois that were determined using the half

power band width technique and al1 2048 tip displacement vs. time data points. The other

data points .nown in Figure 21 are the ioss factors determined for each successive 512 data

point set. The lines shown in Figure 21 are linear fits to the fou: sucý.essive 512 data point
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los.; factors for each of the five specimens. It should be noted that these lines are

extrapolated to z=a displacement. In addition, the dashed vertical lines in Figure 21

partition the figure into four sections, indicated by the numbers 1-4. Each interval indicates

the range of maximum tip displacements for each of the 512 data point sets for each of the

specimens. For example, region 1 shows the range of the maximum tip displacements for

the first 512 recorded tip displacements of the five test samples.

Some significant results can be extracted from Figure 21. First, there is little

variation in the loss factor determined using all 2048 data points. It should be pointed out

that for all five specimens, the beam tip amplitude had oscillations which remained greater

than _ 0.002 in. for the entire data set. Second, for each specimen, the loss factor

determined using the first 512 data points of each specimen data set was greater than the

loss factor determined using all 2048 data points. Third, the loss factors determined for a

given specimen using the iour successive intervals decreased as the maximum amplitude of

vibration decreased. And finally, the loss factor e,;vrapolated to zero displacement using the

four successive intervals is approximately equal to the loss factor determined using the

entire data point set. The average of the zero extrapolated loss factors from the five

specimens was 75.1 x 104. For the case where all 2048 data displacement points are

utilized, the average value of the loss factor was 63.9 x 104. The reason that a difference

exists may be due to the resolution and accuracy of the data in the last 512 data point set.

For the 5.0 in (12.7 cm) beams, the same- test and analysis procedure was utilized.

Figure 22 shows the calculated loss factors using 2048 and 512 data point sets. The various

features shown in Figure 22 are the same as those utilized in Figure 21. Many of the same
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characteristics shown to occur for the 11.0 in (27.9 cm) specimen are also shown to occur

for the 5.0 in (12.7 cm) specimen. First, there is a variation in loss factor with beam tip

displacement as seen using the loss factors determined in the successive 512 daia point

sets. For this beam length, however, there is less of a decrease in loss factor as the

amplitude of vibration decreases. It should be noted that it was not possible to resolve a

peak in the dB magnitude FFT vs. frequency curves for the fourth 512 data point interval

of any of the 5.0 in. specimen data sets. If a loss factor was determined using the log

decrement method, the resultant loss factor would be very low. The loss factor determined

using all 2048 data points is significantly lower than the zero extrapolated loss factor, 65.0

x 10 -4 versus 84.6 x 10-4. This shows that the incorporation of displacement information

which becomes masked by the noise of the acquisition system, or has virtually come to

rest, has the effect of lowering the value determined for the loss factor.

It should be noted that for the 5.0 in (12.' cm) beams, the acquisition rate used was

approximately 14 times the first resonant frequency. Even at this acquisition rate, the

beam displacements for the last 512 data points of a 2048 set were, on the order of the

resolution of the sensor. This shows that as the resonant frequency of the beam is

increased, the acquisition rate should be increased nonlinearly so that tip displacements are

significantly greater than the sensor resolution over the entire 2048 data set. This wil

provide a more accurate description of the beam tip displacement history.

Similar findings were obtained for the series S-2 Glass/3501-6 90 degree beams

tested for this investigation with lengths ranging down i3 2.0 in.(5.0 cm). In all cases, the

loss factor determined using the sets of 2048 data points resulted in loss factors that were
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significantly lower than the zero extrapolated loss factor using the methodology described

above. Again, this result occurred due to the incorporation of the displacemcnt information

which was within the noise of the data acquisition system.

A Proposed Robust Testing Methodology for the Loss Factor Determination of Composite

The finding of the variation in loss factor as a function of tip displacement amplitude

has significant ramifications. In vibration testing that is normally performed to determine

the damping loss factor of materials, care is taken to ensure that all external sources of

energy dissipation are minimized. The magnitude of the damping provided by these

sources is, however, difficult if not impossible to determine and eliminate. In general,

then, the loss factor determined using any of the methodologies discussed in chapter 2 will

be the summation of the material loss factor and the environmental losses associated with

the test itself.

In addition, it has been shown that it is necessary to determine the applicability of the

displacement information prior to performing data reductions for loss factor determination.

Incorporation of near zero displacement information, or displacements that are on the same

order of magnitude as the noise of the system, has the effect of lowering the calculated

value of the loss factor. This occurs because of the effective averaging of this loss factor

with the losses that occur at the larger more resolvable displacements. Another reason for

errors occurring when the near zero displacements are included in the determination of the

damping loss factor is due to the relationship of the magnitude of the tip displacements

relative to the sensitivity of the sensors measuring the beam tip displacements. For large
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beam displacements, on the order of +0.010 in. (_+0.25 mnm), and a sensor resolution of

_+0.0001 in (2.-0.0025 mm), tip displacements have an error of + 1%. Howeve , when tip

displacements are on the order of +0.001, the sensitivity of the sensor does not change. In

this case there is an associated error of ±10%. This is in addition to the other sources of

error that can arise in the instrumentation, such as noise.

This phenomenon has been observed by other researchers investigating the vibration

damping of composites. Hoa and Oullette(49) conducted an investigation on the effect of

microstrain on the damping loss factor of hybrid composite beams. The beams were given

an initial step excitation followed by a free decay. The loss factor was measured using the

log decrement test methodology, Tht results of their testing are shown in Figure 23.

Although they attribute the decrease in the calculated loss factor to the decrease in the strain

or amplitude of vibration, it may be the result of the sensitivity of their instrumentation as

was described above.

Based on the results described above, a robust .sting methodology for determination

of the material loss factor of composites is proposed. First, a well designed apparatus is

required which is calibrated using a well characterized test specimen. The apparatus

described in Chapter 4 is an example of such a system. The magnitude of the beam tip

displacement vs. time must remain greater than the noise and resolution of the sensor and

data acquisition system. As such, the data needs to be visually or numerically interrogated

to insure that this condition is met. If not, then a possibility exists that the resultant loss

factor will be lower than the actual material loss factor. If displacements over the time

interval which are utilized in the FFT are allowed to become smaller than 0.001 in.
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(0.025 mm) for more than 25% of the displacement vs. time curve, the loss factor that is

calculated appears to be lower than the actual material loss factor.
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Figure 23: Loss Factor vs.MicroStain for (0Gr)2/(4 5 Kev)3/(Gr)2 (after Boa & Oullette(49))

"7he displacement versus ti-ae data should thin be partitioned into 512 data point

intervals. A Fourier transform should be performfd on each data set and loss factor

determined using the half power band width method. The maximum tip displacerment in

each set should then be determined The loss factor Lis a function of this tip displacement

should then be plotted. A least squares fit should be performed on the data, with an

extrapolation being made to zero displacement. This is done in an. atempt to eliminate

extraneous source of energy dissipation. As the beam's tip displacements increase, various

sources of energy dissipation can occur. The extrapolation to zero displacement should
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reduce the extraneous losses, providing a more robust testing protocol. In addition, it is

hypothesized that the loss factors that result are more representative of that which would be

experienced by an actual structure since, in the majority of cases, displacements are small

and/or the structures are restrained from experiencing large displacements. This testing

methodology should provide increased accuracy and precision for the determination of the

damping loss factor of materials.
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Chapter 6

S-2 GLASS/3501-6 AND AS4,'3501-6 DAMPING LOSS FACTOR DETERMINATION

In Chapter 5, a robust testing methodology for the determination of the material

dampirg loss factor determination of composites was presented. This testing proceduire

provides an accurate measure of the material loss factor of composites. This testing

methodology was utilized to determine the damping loss factor -of S-2 Glass/3501-6 and

AS4/3501-6 glass and graphite composites. The damping loss factor testing is being

conducted to provide the input required to ,he analytical model developed in Chapter 3 for

the determination of the damping loss factor of general lanývnated composites made with

these two composite systems.

The epoxy matrix used in this investigation is a viscoelastic material. Although the

fibers are assumed to be elastic, the composite response is expe'cted to be viscoelastic.

Consequently, the loss factor for the composite is expected to be a function of frequency.

To properly characterize the composite, then, it is necessary to determine the loss factor at

various frequencies, i.e. beam lengths. The material ioss factors that are required for the

analytical model are hil,, 1122, and 1112. This chapter will present the results of the testing

conducted on the composite materials using the robust test procedure given in Chapter 5.

In addition, methodology is presented for analytically determining an accurate

168
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estimate of 1112 using the experimental results and analytical model. In addition, a

discussivn is presented on the validity of the assumptions made on the Poisson's ratios

being real and independent of frequency.

Vibration Damping Loss Factors of S-2 Glasst3501-6 and AS4/3501.6

All composite specimens were tested using the methodology given in Chapter 5. In

summary, the composite materials manufactured in this research were machined to the

desired beam length. A specimen was placed into the clamping fixture with the

fiberglass-reinforced Teflon pieces placed between the specimen aid the movable clamp

block. The clamp block bolts were tightened to a torque of 10 ft-lb. The eddy current

probe was then positioned, centered approximately 0.5 in. from the end of the beam. The

resonant frequency was calculated and the desired acquisition rate chosen, which was at

least 8 times the first resonant frequency of the beam. The data acquisition program was

then run. The specimen was excited with an impulse near the clamped end of the

specimen. The displacement and force versus time information was stored for later

manipulation. The size of the data set was reduced to 2048 data points. This information

was then read into ILS and stored with a record size of both 2048 and 512 data points. An

FFT was performed on the data and stored as a file. The stored FFT files were then input

into the graphics routine, Grapher, where a fourth order curve fit of each side of the first

resonant peak was determined. The orthogonal coefficients and the alpha and beta

recursion numbers were th,,n input into a file. These files were then used as input to a

basic computer program which computed the intersection of the two curves, the resonant

frequency and the half power points. For each specimen, the maximum displacement in the
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512 data point sets and the appropriate loss factors were stored as a data tile. This data file

was then used as input to the graphics routine, Grapher. A linear fit was then performed

for each specimen, extrapolating the curve to zero displacement. These zero displacement

extrapolated loss factor values with the appropriate frequency were. then input into a file

which is used to characterize the frequency dependence of the damping loss factor.

The specimen configurations tested included 0°, 90* and ± 450 for both the S-2 glass

and AS4 graphite epoxy systems. The beam lengths were chosen so that the first resonant

frequency would be between 10 and 1000 Hz. To properly characterize the frequency

response of the material in the frequency range of 10 to 1000 Hz., a series of beam lengths

had to be chosen so that their first resonant frequency was in this interval. The lengths

were chosen so that the loss factor at approximately 100 Hz intervals could be determined.

There were some restrictions on beam length that were imposed by the specific apparatus.

The longest beam length that could be tested was 12 in. (30.5 cm). This results in a

different lower bound for the lowest first resonant frequency for different material

configurations tested. For given beam dimensions, the effective bending stiffness of the

beam will govern the beam response, as was shown previously by equation 149. In

addition, the shortest beam tested had to have a minimum of 20:1 length to thickness ratio

in order to minimize the effects of shear and rotary inertia corrections to the damping loss

factor determination (1). The results of the testing are shown in graphical form in

Figures 24-29. The specific information for each beam lergth is also given in tabulated

form in Appendix E.
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For a typical resonant frequency, the zero d~splacement extrapolated loss factor has

some interesting characteristics. First, for a given beam length, there appears to be a

variation in the r"ate of decay in loss factor as a function of the maxinmum displacement.

This may occur as the result of material variations from specimen to specimen. Any

material anomaly within the specimen, such as fiber waviness or fiier misorientation, that

are possible sources of energy dissipation are minimized when displacements are small. As

the displacements are increased, the energy dissipation caused by these material anomalies

should also increase. In addition, a scatter in the experimentally determined resonant

frequency occurs, the result of minor variations in beam length within one data set. This

variation in beam length may also affect the loss factors. These characteristics are evident

in the results presented in Figures 21 and 2?.

Another interesting characteristic of the zero displacement extrapolated loss factor

curves is the variation in their slope as a function of beam length, or frequency. This

variation in slope may be the result of a change in stress distribution in the composite

material or it may be the result of the viscoelastic character of the matrix. It may also be the

result of a variation in aerodynamic damping as a function of frequency. Some

investigators have indicated that the aerodynamic damping is a function of the velocity of

the beam center of gravity (74,75). As the resonant frequency is increased for a given

amplitude of vibration, there is an associated increase in velocity of the center of gravity of

the specimen.

In order to extrapolate the values of the material loss factors of the ,wo material

systems in the range of frequencies up to 1000 Hz, the experimental values were curve fit.



178

For the 900 beam configuration, there were two curve fits used on the experimental data: a

logarithmic fit and a linear fit. The best fit to the experimental data, determined using a

least squares approach, was the logarithmic fit. It will be shown later in this chapter that

the epoxy resin system also possesses a logarithmic frequency dependence of the loss

factor. The similarity in the frequency dependence of the loss factor between the 90'

composite beam and the unreinforced resin is expected, since a composite with a 90'

orientation will possess matrix dominated characteristics.

A mechanical analogue that can be used to approximate the response of the 00

orientation would be the Voigt-Kelvin model of the spring dashpot in parallel. In this

model, the loss factor should be directly proportional to the loss factor of the matrix. Since

the loss factor of the matrix possesses a logarithmic dependence with frequency, it is

assumed that a logarithmic fit would most accurately describe the frequency dependence of

the 00 orientation. Because of the nonuniform trends in the loss factor as a function of

frequency for this orientation, a logarithmic and linear fit were again used to fit the data.

The best fit to the experimental data, determined using a least squares approach, was the

linear fit. It should be pointed out that the variation in the two fits was minimal. Since the

linear fit provided the most accurate description of the data, this is the fit that will be used to

extrapolate the loss factors in the frequency range up to 1000 Hz. For an extrapolation

outside this range, the logarithmic fit should provide the most accurate representation of the

frequency dependence o%' the loss factor.

For the +45' beams, two different approximations were used. For the S-2

glass/epoxy, the experimeta! data was fit using logarithmic and linear approximadions.
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The curve fit that provided the most accurate representation of the data, again based on a

least squares analysis, was the logarithmic fit. The logarithmic form should be from a

physical standpoint. The ±45' configuration in bending will experience in-plane shear

stresses along with in-plane normal stresses. The shear characteristics of the composite are

dominated by the shear characteristics of the resin. As such, it is anticipated that the loss

factor ci'-racteristics of this configuration should parallel that of the resin.

The +45' AS4/3501 -6 material showed tends that were not anticipated. As such, a

polynomial fit was used to approximate the. data. Although the loss factor values at low

frequency were very reproducible, the low frequency values are still questionable.

However, in order to determine trends in the frequency range up to 1000 Hz., the third

order polynomial fit will be utilized.

The curve fits that were obtained for the specific material and orientation are given as

follows:

0' glass 1, = 5.1476 x 10-7 f+ 5.98698 x 10-3 (152)

90° glass T12 = 8.37194 x 10-4 In(f) + 4.06544 x 10-3 (153)

± 45' glass 7112 = 2.08645 x 10-3 In(f) - 2.95132 x 10-3 (154)

00 graphite r'lI = 2.44682 x 10-6 f+ 3.56894 x :,-3 (155)

900 graphite 112 = 1.87469 x 10-4 In(f) + 5.42504 x 10-3 (156)

± 450 graphite Tj 12 = third order polynomial with orthogonal coefficients of the form

given in equation 147 where the orthogonal and recursion

factors are given as (157)
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a0=70.925 x 10-4 iO1 = 0 P1 = 0

a, =7.94784x 10-4 02 = -0.715559 P2 = 1.86312

a2 = 6.68701 x 10-4 o3 = 0.503032 033 = 1.0/59

a3 = -2.87757 x 10-4 0t4 = 0.202372 =4 0.962746

A statistical analysis of the curve fits was conductt 1 using the Student t analysis

method. For the comparison of the loss factors, the t distribution was used as the basis to

determine if the difference between two means is significant or due to random variations in

the data. For this analysis, the pooled variance, S2P, and the standard deviation of the

difference in means, S(x2.x,)' were determined. The pooled variance is given by

.22

(n, - 1) Sx 21 +(n 2 - 1) S 2

n, + n2 - 2 (158)

where n1 and n2 are the number of samples in the data set and S2,, and S2,x2 are the

standard deviations for sample sets 1 and 2 respectively. The standard deviation of the

difference i, means is given as

S2 2( 1 1 ) nl+n2

(X2 Sx P nj 2 SP nj n 2  (159)

The statistic t is then computed as

1X2 X1
S-

(x2 -X) (160)

The value of t determined in equation 160 was then compared to the value of t(a) given in a
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Student's t distribution for d degrees of freedom table given in reference 76. From this

table, a degree of confidence was detenrined for each successive mean frequency. The

statistical information generated using equations 158-160 are presented in Appendix F.

The results can be summarized as follows; there is at least a 95% confidence that the data at

each frequency is significantly different from the previous frequency. The curves that were

generated to indicate the trends in the loss factor as a function of frequency are significant.

In addition to the damping loss factor characterization for the composite material,

characterization of the loss factor of a similar matrix system was also performed. The

matrix material used in this portion of the dissertation was a 3500 F epoxy from the Narmco

Division of BASF, which they designate 5208. The Hercules Corp. 3501-6 resin was not

tested because it was not sold in bulk form. The characterization of the damping loss factor

of the matrix will provide an additional check of the test procedure. The testing procedure

used was the robust testing methodology given in Chapter 5. A summary of the results of

the testing are picwented in Figure 30. The specific loss factors for the various beam

lengths are presented in Appendix G. In general, Figure 30 shows that the resin possesses

similar damping loss factor characteristics to the composite materials. The loss factor

exhibits a logarithmic increase with increasing frequency. The logarithmic curve fit shown

in Figure 30 is given as

11m = 28.13 x 10-4 ln(f) + 12.53 x 10-4 (161)

It should also be. noted that the magnitude and frequency dependence of the loss factor

determined herein showed trends that were similar in magnitude and shape to another 350)

F cure epoxy, 934 epoxy made by the Fiberite Division of ICI (64).



182

1000

800 -]

0

x 600

7 40
w 400

(-
"- T
2 T T---__--------

9- 200 T'-3-L -

0 200 400 600 S00 1000

F REQCUENC Y (I'z-

Figure 30 Loss factor vs. frequency for 5208 neat epoxy resin.



183

As a further comparison of the loss factor of the resin to that of the composite

systems, th:. loss factor of the composite is divided by the loss factor of the resin, and this

normalized loss factor is graphed as a function of frequency for the S-2 glass/epoxy

material for the 900, 00 and the + 450 orientations. These art shown n Figures 31, 32 and

33, respectively. This normalization allows easy visualization of the effect of the fiber on

the loss factor of the composites. For the 90' orientation, the normalized loss factor is

linear at frequencies above approximately 50 Hz. Since the 90' orientation is matrix

dominated, it would be assumed that the loss factor should be linearly proportional to the

resin. It is interest;ng to note that the volume fraction of the resin is approximately 40%.

The normalized loss factor of the S-2 Glass/359 1.-6 in the 90' orientation is also

approximately 40%. This vould indicate that an estimate of the loss factor of a polymer in

its glassy legion can be obtained by using a simple rule of mixtures approach.

For the 00 orientation, the normalized loss factor decreases with increasing frequency.

This characteristic is reasonable since the composite in this configuratior, is fiber dominated

and will respond more elastically than as a visccelastic. As the frequency is increased, the

viscoelastic characteristic of the matrix becomes more elastic also, thereby resulting in a

slight decrease in loss factor with increasing frequency.

The normalized loss factor for the + 43' orientation exhibits an increase with

increasing frequency. The normalized loss fctor for the + 450 orientation is also seen to be

greater than that of the 90' orientation. This result is probably due to the in-plane shear

strains that are present in the + 450 specimens and which are not prcsent with the 900

specimens. Since the dominant mode of energy dissipation by a viscoelastic is through
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shear, it is reasonable that the + 450 normalized loss factor increases with increasing

frequency.

Analytical Determination of n.2

It should be recalled that the shear loss factors of the composites were estimated using

a + 450 beam specimen. For this specimen orientation, the application of a bending moment

results in a combination of longitudinal, transverse and shear in plane stresses. The

assumption that the loss factor of the + 450 beam specimen is equal to the shear loss factor,

T1'12, is therefore in error. The loss factor that is determined using this specimen is actually

the summation of the losses attributable to the these stresses.

It is possible, however, :o determine the shear loss factor of the composite using

experimental values of the loss factor of the + 450 specimen. This is done by using the

proposed analytical model along with the longitudinal and transverse loss factors that were

experimentally determined. One of the test frequencies of the ± 450 specimen is first

chosen. The values of T 1 and T122 are then determined for this frequency using equations

152 and 153. An estimated value of "112 is chosen. The values of 7111, Ti22, and "i"12 are

then used as inputs for the model described in Chapter 3 to analytically determine the loss

factor for the + 45' specimen. The value of 7112 is adjusted until the predicted and

experimental values of the loss factor for the + 450 specimen are within 0.1%. This value

of T112 is then taken to be the loss factor in shear for the materiai.
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To determine 1112, the analytical model was programmed using the symbolic

manipulator program, MathmaticaTM. The complex moduli El* and E2* that were used as

input for the model are those given in equations 152 and 153 for the S-2 Glass/3501-6 and

by equations 155 and 156 for the AS4/3501-6. The program uses these complex moduli to

determine the values of the ABD matrix. The various terms for the reduced stiffnesses are

complex. As such, conventional laminated plate theory routines would not be able to

perform the manipulations required by the model. The inverse ABD matrix is then

determined. This operation, although straightforward for the symbolic manipulator

program, MathmaticaTM , is quite difficult to perform either by hand or using conventional

computer algorithms. Since the + 450 specimen is subjected to a bending moment, the loss

factor is determined using the equation for the effective bending stiffness, equation 146.

This calculated value oft1 +45 is then compared with the experimental value. The estimatcd

value of T1 12 was then increased or decreased based on the analytically determined value of

"T_±45. This iterative process was continued until the estimated value of "112 in the analytical

model gave results that were within 0.1% of the experimental value.

This process was used to determine the value of 1112 from 50 to 1000 Hz. The results

of this analysis are given in Table 14. The results are also presented in graphical format in

Figure 34. It should be noted that the loss factor that was experimentally obtained for the

+ 45' specimen is slightly lower than the estimated shear loss factor. These results are

consistent with current thinking of energy dissipation of viscoelastic materials. The

predominant source of energy dissipation in a viscoelastic material is in shear. Since the

+ 450 specimen is not in a state of pure shear, the loss factor calculated should be less than

the shear loss factor.
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Table 14: Deterniinatioji of 1112 using Experimental Values Of T111, T122, and 71+45 for S-2
Glass/3501 -6.

Frequency Till T122 T1-12 11+45 model 11+45 experimental

(Hz) (x 10-4) (x 10-4) (x 10-4) (x 104) (x 10-)

50 60.13 73.41 49.24 52.11 52.11

70 60.23 76,22 57.90 59.13 59.13

100 60.38 79.21 67.07 66.57 66.57

200 60.90 85.01 84.86 81.03 81.03

300 61.41 88.41 95.22 89.49 86.49

400 61.93 90.81 102.55 95.50 95.50

500 62.44 92.68 108.20 100.15 100.15

600 62.96 94.21 112.81 103.96 103.96

700 63.47 95.50 116.69 107.18 107.17

800 63.99 96.62 120.03 109.96 109.96

900 64.50 97.60 122.96 112.41 112.41

1000 65.02 98.49 125.58 114.61 114.61

This same procedure was used to analytically determine the shear loss factor for the

AS4/3501-6 material. Similar results occurred. The calculated value of 1112 was greater

than the experimental value obtained using the ±450 specimen. The results from this

procedure are given in Table 15. Figure 35 shows the comparison graphically between 11±45

and "112. It should be noted in this comparison, the curve fit for the calculated value of'nl2

is determined for frequencies greater than 50 Hz only. The reason for this is that the

experimental results for frequencies less than 50 Hz cannot be phenomenologically

explained. In addition, it should be noted that the estimated val',e of'1 12 would not be

expected to continue to increase at higher and higher frequencies. Instead, this value should

reach some upper limit asymptotically, similar to the curve generated for the loss
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Table 15 : Deternination of "112 using Experimental Values of TI11, 1122, and r1+45 for
AS4/3501-6.

Frequency T111 r,22 TI12 1+45 model T1+45 exp-rimental

(Hz) (x 10" ) (x 10-4) (x 10-4) (x 10-4) (x 10-4)

50.81 36.93 61.61 102.07 93.94 93.94

73.74 37.49 62.31 67.67 64.03 64.02

117.44 38.56 63.19 56.58 54.50 54.49

214.42 40.93 64.31 53.59 52.18 52.18

317.10 43.45 65.02 61.49 59.37 59.37

441.12 46.48 65.67 j 62.99 61.05 61.05

factor of the resin. As such, there is a limitation on the validity of the estimated value of

"1112 to be limited to the frequency range of 50 to 1000 Hz.

The frequency dependence of 7112 is then determined for both material systems by

performing a curve fit to the analytically determined values given in Tables 14 and 15. The

equations that describe the loss factor as a function of frequency are given as follows

1l12cjlass = 25.4998 x 10-4 In(f) - 50.37 1 x 10i4 (161)

T]12,_,rPtm = second order polynomial with orthogonal coefficients of

the form given in equation 147 where the orthogonal and
recursion factors are given as

a0 =58.6615x 104  a, = 0 PI = 0
a1 = 2.06069 x 10-4  cc2 = -0.0835393 2 = 2.20824
a2 =0.441874 x 10-4 (X3 = 0.120602 P3 = 1.45132 (162)

Throughout the remainder of this report, the shear loss factors for the materials given by

equations 161 and 162 will be utilized.
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Detrmination ofi1 a.n.d j.2 for S-2 Glass!3501-6 using Micromechanical Mode

An investigation was performed to determine the accuracy of the micromechanical

models for predicting the lamina loss factors of composites. The analytical model

developed by Hashin that was described in Chaptei 2 will be used The material

information required by the model are the matrix frequency dependent loss factor, the axial

and shear modulus of the fiber and resin, and the matrix volume fraction. The shear

properties of the fiber and matrix were approximated using the relationship of the axial to

shear modulus for isotropic materials. All other values used for this exercise were

experimentally determined. Table 16 lists the specific input values used in the analytical

model.

Table 16 Material Property Input for Micromechanicai Model

Material Volume Fraction Shear Modulus Axial Modulus
(%) (x 106 psi) (x 106 psi)

S-2 Glass 63 4.77 12.4

Epoxy 37 0.2 0.5

The micromechanical model developed by Hashin provides a methodology for

determining the in-plane axial, ii 11, and shear, TI 12, loss factors as a function of the

materials properties given in Table 16. The equations used are given below as

Tim
"rill = Efvf

1+- Em Vm (163)
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!f(1 +Vf)+ + V rn] [ + (1 +vf)

where Tim is the loss factor of the resin, Ef and E,, are the axial moduli of the fiber and

matrix, respectively, Gf and Gm are the shear moduli of the fiber and matrix, respectively

and vf and vm are the volume fraction of the fiber and matrix in the composite, respectively.

The axial and shear loss factors as a function of frequency determined using

equations 163 and 164 are shown graphically in figures 36 and 37, respectively. Also

included in these figures are the experimental results obtained for the corresponding

composite beams.

The rnicrornechanical analytical determination of i11 is significantly lower than

the experimental values obtained over the entire frequency range. One possible explanation

for this is that the analytical model fails to take into consideration the shear at the fiber

matrix interface. Any shear deformation in the matrix would result in a significant increase

in loss factor of the systerm. Another possibie explanation is that the matrix material near

ýhe fiber has different material characteristics than the bulk matrix. It has been proposed by

numerous investigators that this interphase region of the matrix occurs in an area which is a

fraction of the fiber diameter around the fiber. This material can possess a glass transition

temperature which is lower than the bulk matrix, which results in a frequency dependent

loss factoi" that is different than the bulk matrix. These two conditions would have the

effect of increasing the ioss factor of the composite. As such, it is not surprising that the

Ii I I 1 i 1
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experimentally determined loss factor is greater than the analytical value.

The analytical dctermination of 1112 using the Has~l-n micromechanical model is

shown to give results that are approximately a factor of two greater than the experimentally

determined values in the frequehncy range up to 1000 Hz, as seen in Figure 37. The

micromechanical model assumes that the composite shear loss factor is directly proportional

to the loss factor of the matrix. This appears to he an accurate general description of the

composite shear loss factor since the general form of the experimentally determined shear

loss factor for both the matrix and composite have a logarithmic frequency dependence. In

the micromechanical model determination of ll2 for the S-2 Glass/3501-6, however, the

effective constant of proportionality, determined using Equation 164, is approximately

0.85. If this constant of proportionality was approximately 0.43, the micromechanical
model would rurovide an accurate approxim.ation of the shear loss factor for the S-2

Glass/epoxy system. It should be noted that this constant of proportionality is greater than

the volume fraction of the matrix, which was determined to be 37%, making a simple ruie

of mixtures approach inappropriate. The fv,ýt that the value of i 12 is greater than a rule of

mixture prediction seems appropriate since no consideration is given for any shear at the

fiber matrix interface. To account for this, the incorporation of some form of relationship

between the fiber and matrix shear modulus would seem appropriate. It appears that the

specific form used by Hashin should be modified in order to provide a more accurate

determination of the shear loss factor of composites.
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Comments of the Poisson's Ratios Assumptions

In the development of the analytical model given in Chapter 3, two assumptions were

made concerning the Poisson's ratios: (1) they are real; and (2) they are independent of

frequency. A contradiction arises when thttse assumptions are enforced with the reciprocity

relation. For a material subjected to a set of forces, considering the work done by these

forces and by utilizing the Maxwell-Betti Reciprocal Theorem along with some simple

mathematical manipulations results in the generation of the reciprccity relation

") 12  1)21

E1  E2  (163)

This same relation will hold in complex notation, by utilizing ;he elastic viscce.lastic

correspondence principle. As such, the corresponding rel;ttionship bet Neen the elastic

mcduli and Poisson's ratios will be given as

); 2 _0;,
. ý

E, E2  (164)

In the model presented in Chapter 3, substituting the assumptions on Poisson's ratio intu

equation 164 yields

"U1)2 "U2 1

E, FE (165)

Since the real part of the complex iiodulus is assumed to be rea!, equation 165 yields the

result that the frequency dependence is the same for both the axial and transverse moduli.



199

Experimentally, this does not occur. This indicates the possible need to incorporate a

frequency dependence and also possibly assume that the Poisson's ratios are complex.

The reason the Poisson's ratios were assumed to real and independent of frequency

was the lack of experimental procedure to determine these values. Some assumptions can

be made, however, in an attempt to analytically determine them using the complex moduli

which have been experimentally determined. By definition, U2 1 is the negative of the ratio

of the strain in the 1 direction to the strain in the 2 direction that occurs from the loading of

the specimen in the 2 direction. Upon application of a load in the 2 direction, i.e. an axial

extension of a 90' specimen, there will be an extension of the material in that direction.

Since the material is viscoelastic, this strain will lag the load. As the material is elongated

in the 2 direction, there will be a contraction of the material in the I direction. Since this

direction is fiber dominated, an assumption will be made that this strain is in phase with the

strain in the 2 direction. From this assumption, it is seen that o21 is real. Since the

assumption is made that there is no lag in strain, there should also be no frequency

dependence.

Using the approximation that 1)2 1 is real and independent of frequency, "* 12 can be

determined using the complex reciprocity relation given in equation 164. It should be noted

that "0*12 is assumed to be complex and a function of frequency. Rearranging terms, 1)*12

can be given as

E6
E*2} (166)
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Using the relationship for the Poisson's ratios given in equation 166, then, the reciprocity

relation is maintained.

A sensitivity study was conducted to determine the significance of assuming that all

Poisson's ratios are real and frequency independent compared with the results that are

obtained using equation 166. The Q*ij were determined using the complex frequency

dependent W'12 given in equation 166 and the value of V12 determined from the

experimental investigation. These values were determined at 50 and 1000 Hz to obtain the

range of variation in these values. In all cases, the maximum difference in the real and

imaginary terms of the Q*ij, which occurs at 1000 Hz, were less than 1.5%. These values

are therefore well within the experimental accura.;y of the testing procedure. As such, there

will only be an insignificant variation in the resulting solutions employing the assumption

that the Poisson's ratios are real and frequency independent. Tnis assumption has therefore

been shown to be applicable to this material system.

Parametric Studies of the Flexural Damping Loss Factor of S-2 Glass/3501-6

Some general comments can be made about the information that can now be generated

using the analytical model given in Chapter 3. A complete characterization of the damping

loss factor as a function of frequency has never been reported in the literature. As such, the

analytical determination of the loss factor of a general laminated composite over a given

frequency range was never determined. This model has the utility of being able to

determine the effect of stress couplings on the loss factor. It has been proposed by some

investigators that the difference in loss factor as a function of fiber orientation between the
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off-axis and angle-ply laminates is due to the stress coupling terms. These stress couplings

should then lend themselves to loss factors which are higher than that achievable in pure

shear. For an angle-ply composite, the material is balanced and symmetric, which results

in minimal values of D 16 and D26, i.e. minimal stress coupling effects. For the off-axis

configuration, however, since the material is unbalanced, significant stress couplings are

present. The loss factor determined for the off-axis configuration has a peak at an

orientation of approximately 30", whereas the angle-ply configuration shows a loss factor

maximum at a fiber orientation of approximately ± 45", as seen in Figures 5 and 6.

Calculating the magnitude of the coupling terms D 16 and D26, a peak occurs at a fiber

orientation of approximately 30*. This gives the intuitive indication that the loss factor of a

general laminated composite can be greater than the material's shear loss factor, by taking

advantage of the flexibility in material design. It should be pointed out the loss factor

information presented in Figures 5 and 6 were not determined at the same frequency for all

orientations.

The loss factors in bending of 16 ply angle-ply and off-axis S-2 glass/3501-6 beams

were analytically determined over a frequency range of 50 to 1000 Hz. The fiber

orientations used were from 0' to 90W in increments of 15". The model was used to

analytically determine the complex inverse ABD matrix for each orientation and at

frequencies of 50 Hz and from iWO to 1000 Hz in increments of 100 Hz. The loss factor

was then determined using the D-1 II term in equation 146. The results from this modeling

are presented in Figures 38 and 39 for the angle-ply and off-axis material, respectively.
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Several results are evident by comparing the loss factors as a function of fiber

orientation for these two configuratioits. The major difference in the two configu'rations is

that the off-axis configuration has significant stress couplings because it is unbalanced.

The first obvious difference in the two configurations is that the loss factor for a specific

orientation over the entire frequency range is greater for the off-axis orientation with the

exception of the 0' and 900 orientations where the loss factors are identical. Secondly, the

effec1 of the stress coupling on loss factor more pronounced for the 150 and 30"

orientations then any of the other configurations. At a frequency of 1000 Hz, the 15"

off-axis loss factor was 28.5% greater than the angle-ply loss factor, while the 30" off-axis

loss factor was 24.8% greater than the angle-ply loss factor. This increase is attributed

solely to the stress coupling terms. Third, the ranking of the loss factors as a function of

material fiber orientation is different in the two configurations, as is evident in the

magnitude of the loss factors at 1000 Hz.

In addition, there are also some similarities that can be pointed out. First, the general

shapes of the curves are similar. Secondly, the maximum value of the loss factor - in both

cases this occurs for the 45' orientation - is on the same order of magnitude. Third, in all

cases, in the frequency range of 50 to 1000 Hz, the flexural damping loss factor increases

as the frequency increases.

Some interesting results can be obtained using the analytical model and the

infornation given above. For example, in the experimental determination of the loss factor

for an angle-ply and off-axis S-2 Glass/3501-6 specimen, beams with the same dimensions

are typically used. For a given orientation, the beam stiffness and therefore the resonant
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frequency will vary. Since most investigators have not acknowledged the frequency

dependence of the loss factor of composite materials, the frequency at which the test is

conducted is of little concern. The information that they present, then, gives the loss factor

as a function of orientation at different frequencies.

As an exercise, the effect of fiber orientation on loss factor will be analytically

determined in the same manner that previous investigators have experimentally determined

the loss factor. Specifically, an arbitrary beam length of 6.0 in (1.5.2 cm.) will be

assumed. In addition, all beams will be assumed to have a thickness of 0.2 in (5.0 mm).

To use the analytical model, the effective beam stiffness is first determined. This was done

using a lamination plate theory routine to determine the ABD inverse matrix. The beam

effective bending stiffness is then determined by substituting the D- 1
11 term into equation

144 for each of the orientations used. It should be noted that the effective beam stiffness of

an off-axis beam is different than its angle-ply counterpart by virtue of the stress couplings

that occur. Using this beam stiffness, the first resonant frequency of each beam is then

determined using equation 149. The loss factor for each orientation at each of the

frequencies is then determined using the analytical model given in Chapter 3. Tables 17

and 18 present the results for the angle-ply and off-axis beams, respectively. These tables

show the variation in resonant frequency that occurs when the beam dimensions are kept

constant.

T1he results of both the off-axis and angle-ply loss factor given in Tables 17 and 18

are presented graphically in Figure 40. This graph shows trends that are similar to those

obtained by other investigators, as in Figures 5 and 6. First, there is a difference in the rate
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Table 17: Analytical Determination of Loss Factor vs. Fiber Orientation for Angle-Ply
S-2 Glass/3501-6

Orientation Frequency Loss Factor

(Hz) (x 10-4)

0 186.36 61.42

+15 174.17 62.90

+30 139.71 66.91

+45 107.39 68.04

+60 101.55 73.79

+75 106.64 79.02

90 109.19 80.43

Table 18: Analytical Determination of Loss Factor vs. Fiber Orientation for Off-Axis
S-2 Glass/3501-6

Orientation Frequency Loss Factor

(Hz) (x 10-)

0 186.36 61.42

15 155.14 68.05

30 119.73 69.55

45 103.93 69.66

60 101.39 72.83

105.86 77.85

F 109.19 80.43

of increase in loss factor for the two configurations. The off-axis material shows a more

rapid increase in loss factor than the angle-ply configuration. The explanation for this is

that additional losses are present by virtue of the stress couplings in the off-axis material,

whereas the angle-ply configuration has no stress couplings, since it is both balanced and

symmetric. At fiber orientations greater than 45', the loss factor of the two configurations

are within 2%.
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Figures 38 and 39 can be used to visually determine the effect of orientation at a

constant frequency. What is evident in these figures is that it is important to specify the

frequency of interest. The shape of the curves of loss factor vs. fiber orientation at

constant frequency will vary, showing maxima for different orientations at different

frequencies. This helps to explain the inconsistency in the results of several investigators

who report varying orientation at which the maximum in loss factor occurs.
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It should also be pointed out that the model has the capability of detennining the effect

of hybridization on resultant loss factor. The affect of the incorporation of two or more

different fibers within one test specimen on the resulting damping loss factor has not been

considered in the literature. The hybrid configuration may provide an alternative means of

attaining specific damping loss factor values which would currently be achievable only by -

varying the fiber orientations.

Summary of the Material Damping Loss Factors for S-2 Glass!3501-6 and AS4f3501- &

The loss factor for the 90 degree S-2 glass/3501-6 and AS4/3501-6 unidirectional

composites is a nonlinear function of frequency, showing an increase in loss factor with

increasing frequency. The loss factor for the 0 degree S-2 glass/3501-6 and AS4/3501-6

undirectonal composite appears to be linear, showing an increase with increasing

frequency. From experimentally determined 0' and 90' loss factor information, a

methodology is given to determine the shear loss factor based on the loss factor results

obtained in a + 45' beam specimen. The shear loss factor is greater in magnitude than the

other orientations. The assumption that the Poisson's ratios are real and independent of

frequency has been shown to be a plausible assumption, which will result in only minor

variations from results obtained which include these dependencies. The results of

experimental investigations in the literature which attempt to determine the effect of fiber

orientation on loss factor can be analytically determined using the model described in

Chapter 3. The differences that occur when considering angle-ply versus off-axis results

has been shown to be the result of the stress coupling effects on loss factor.
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MODEL VERIFICATION

The analytical model that has been proposed in Chapter 3 has the capability to

determine the damping loss factor of general laminated composites with any stacking

sequence and with any combination of r. aterials, provided the material loss factors are

known. In this investigation, the material loss factors of two material systems were

determined. The parametric studies that were performed can account for the trends that

were obtained by other investigators. To gain added confidence in the model, however, it

is necessary to show the correspondence between the analytical predictions of the clamping

loss factor with experimental determination of the loss factor of a general laminated

composite configuration.

For this validation, it was decided to utilize two different laminated configurations

using the S-2 Glass/3501-6 composite material. This material was chosen over the

AS4/3501-6 material, due to its availability.

ITst Specimens

There is an infinite variety of possible laminated configurations that could be used to

209
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validate the analytical model. One material configuration that is often used in structural

applications is the quasi-isotropic configuration, [0/90/45/-456n. Although this

configuration results in material properties which are isotropic in the plane of the material,

the bending stiffness is a function of the orientation tested. In addition, there is a variation

in the magnitude of the stresses or strains through the thickness of the material when it is

subjected to a bending moment. As such, there should be a variation in the loss factor of

this material as a function of the outer ply orientation.

A 16 ply laminate was fabricated having the configuration [0/90/45/-45]ns. After

fabrication, the panel was nondestructively inspected using the previously described

ultrasonic C-scan inspection system. In addition, the fiber volume fraction was determined

using the procedures previously indicated. This testing indicated that the panel was free of
fdctwiug defects and had thc samc fiber volume fraction as the glass material which

had been previously tested, 63%.

Two sets of specimens were machined from this panel using a diamond-impregnated

blade attached to a milling machine. One set had an outer fiber orientation of 90', while the

second set had an outer fiber orientation of 450. The two beam configurations tested then

were [9 0/0/-45/4 5]2s and L45/-45/0/012s. In all cases the specimens had a width of 1.0 in.

(25.4 mm).
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Test Pcedur

The material was tested using the apparatus described in Chapter 4 and the robust

testing methodology described in Chapter 5. The material was to be characterized in the

frequency range of 50 to 1000 Hz since this is the range in which the material loss factor

was previously determined. This is accomplished by testing beams of various length. Five

specimens of a specific length were used for each of the frequencies tested. Initial beam

lengths for each configuration were chosen so that its first resonant frequency was

approximately 50 Hz. The beam lengths were then reduced to obtain loss factors at

frequencies which were multiples of 100 Hz. The minimum beam length tested was 2.0 in.

(50.0 mm) to minimize shear and rotary inertia effects on the loss factor. The results of

this testing are given in Table 19.

Table 19: Flexural loss factor determination of S-2 Glass/3501-6

Configuration Frequency Loss Factor IStd. Devi
. (Hz) (X 104)

[45/-45/90/012, 53.4 61.52 [6.25]

78.0 76.96 11.8)

115.1 65.90 15.0]

208.8 65.39 12.31

326.8 77.68 [6.0]
441.4 78.78 18.01

[90/0/45/-45]2s 54.7 55.47 [6 5]

98.6 64.31 18.61

213.8 60.19 [3.6]

487.4 67.33 11.8]
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Severad features concerning the lops factor of these two configurations arc evident in

Tdble 19. First, for both configurations, there is an increase in loss factor with increasing

frequenzy. This follows thc general trend that was evidet: in the testing of the

unAdirectional composite samples. Second, the quasi iso:ropic configuration results fall

within the range of values previously obtained for i&'e angle-ply configuration. Intuidvely

this should occur, since the loss factor of :he quasi-isotrepic configuration should be some

combination of the loss factors from the orientations used. Finally, the [4 5/-4 5/90/012s

cofrfiguration had a higher loss factor than the [90/0/45/-45.12 configuration. Intuitively

again, this should occur since the former configuration has the higher damping material

subjected to a higher stress level.

Analytica Determination of Fiex%•.lssFacto

The analytical model developed in Chapter 3 is used to analytically determine the loss

factor of the two quasi-isotropin configurations tested. The input required for the analytical

model, i.e., the complex moduli, was previously giver in Ch.-. ter 6. The complex moduli

are necessary to determine the complex ABD invers,. matrix. Once this matrix is

determined, the flexural loss factor is determined using the D-A1 1 term in equation 146.

The specific inputs used in this development are given below as

E1= 8.39 x 106(1 + i (5.1476 x 10-7f + 59.8698 x 10 )

E2 = 2.88 x 10 (1 + i (8.37194 x 10 In f + 40.6544 x 10 )

G•, =0.885 x10 +i (25.4998 x 10-4In f-50.371 x 10')

v2=0.264 v21 = 0.0913
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The analytical model was written into a computer program to determine the complex

ABD matrix. The program that was utilized was MathmaticaTM, a symbolic nmanipulator

program. The program calculated the components of the complex ABD matrix as a

function of frequency. The program then determines the inverse complex ABD matrix.

The flexural loss factor is then determined using the D-IIl term in equation 146. The loss

factor as a function of frequency was determined for three different outer ply orientations of

the quasi-isotropic configuration. These orientations were [4 5/-45/90/012s, [90/0/4 5/-4 512s

and [0)9 0/45/-45 12,. These analytically determined loss factors are presented graphically in

Figure 41.

The loss factors shown in Figure 41 show trends similar to those seen with other

configurations. First, the loss factor increases with increasing frequency. Second, the

specific stacking sequence affects the loss factor of the laminate. For the quasi-isotropic

laminate configuration, the orientations can be given in order of increasing loss factor as

0/O90/4 5/-4 5]2s, [90/0/-45/4512s, and [45/-45/90/012s. This shows that to achieve the

maximum damping loss factor, the stacking sequence used should have the orientation with

the highest loss factor located near the surface of the laminate. The analytically determined

loss factors for the quasi-isotropic configuration fall in the range of loss factors previously

determined for the angle-ply configuration.

Comparison of the Analytically Determined Loss Factor with the Experimental Results

For comparison purposes, the experimental and analytically determined loss factors
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Figure 41 Loss factor vs. frequency for quasiisotropic S-2 Glass/3501-6 beams with
varying outer ply orientations.
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will be presented graphically. Figure 42 shows the comparison for the [90/( '-45/4512s

configuration. The two curves shown in Figure 42 are curve fits to the analytical and

experimental loss factor values. The analytically determined loss factors are shown to

follow the same trends as the experimental values. In general, the analytical values are on

the upper side of the scatter, or as a maximum are on the order of 10% greater than the

experimental values. This may be due to the manner in which the values of the

experimental loss factor are determined. The linear extrapolation to zero displacement may

not be appropriate. Instead, a nonlinear fit, such as a logarithmic fit, may be more

appropriate.

Figure 43 shows the comparison of the experimental and analytically determined loss

factors for the [4 5/-45!9 0/0]2s configuration. For this configuration, the analytical model

provides an accurate description of the experimentally determined values of loss factor.

The analytically determined loss factor falls within the scatter of the experimental values in

the frequency range in which the experimental values were determined.

In general, the analytical model based on the elastic viscoelastic correspondence

principle appears to provide an adequate prediction of the damping loss factor of a general

laminated composite configuration. Trends occurring experimentally in the material are

shown to occur using the analytical model. The analytical model has been shown to

provide a loss factor which is within 15% of the experimentally determined values in the

frequency range of 50 to 500 Hz.
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Chapter 8

CONCLUSIONS

This research addresses the issue of the mechanical vibration damping of glass and

graphite composite materials. In general, the loss factors of these composite materials have

been shown to be a function of frequency. As the resonant frequency of the material is

increased, the loss factor increases. The rate at which these increases occur is a function of

the laminate configuration.

An analytical model was developed based on the elastic-viscoelastic correspondence

principle. In this research, the frequency dependence of the damping loss factor is

included, thereby extending the model as it is currently used in the literature. The

incorporation of this frequency dependence has been shown to analytically explain the

discrepancies in the literature on the loss factor as a function of fiber orientation. Different

investigators have obtained conflicting experimental results for the composite laminate fiber

orientation which results in the maximum loss factor. Using the analytical model

developed in this research, all of their results can be shown to be valid. This occurs

because for a given investigation, the test specimen dimensions are typically kept constant.

When the fiber orientation of the test specimen is changed, the beam stiffness also changes.

This results in a change in the first resonant frequency of the beam. The results of the

model show that for a given frequency, the fiber orientation which has the highest loss

factor is different.
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The model has shown that the stress couplings that occur in unbalanced laminated

constructions have a pronounced effect on the loss factor. The loss factor was shown to

increase proportionally to the magnitude of the bending twisting coupling terms. The loss

factor therefore showed the most pronounced increase for orientations of 150 and 30'.

The loss factors determined using the analytical model have shown excellent

agreement to the experimental results. This model can therefore be used as an analytical

tool to determine the material loss factor of composite materials at any frequency of interest.

In addition, the loss factor in any direction can also be determined. This will enable the

bounding of the structural loss factor to be obtained. This would be accomplished by using

the following procedure. First, the maximum and minimum values of the material loss

factor in the frequency range of interest is determined for the specific material configuration.

This minimum and maximum value would then be used as input to one of the various finite

element routines, since most finite element routines aT low only a single value of damping

loss factor as input. The finite element model would then determine the strain energy

dissipated and stored in the structure. The loss factor is then determined using the ratio of

the energy dissipated to the stored energy, as was previously discussed in Chapter 3. In

addition, the structural loss factor at specific frequencies can also be determined by

determineing the specific material loss factor at a given frequencyi and using this as input to

the finite element routine. This capability, to the author's knowledge, has not been

previously available to the structural designer.

The analytical model, as well as the experimental investigation, indicates that to

achieve the highest flexural loss factor for a given set of laminae orientations, the
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orientations that have the highest loss factor should be positioned near the surfaces of the

specimen. This is demonstrated in the analytical determination of the loss factor for the

quasi-isotropic configurations shown in figure 41.

An experimental apparatus has been designed, fabricated and calibrated for

determining the in-plane vibration damping loss factors of composites. The use of a

Teflon-impregnated glass fabric, commonly used as peel-ply material in the composites

industry, and a bolt torque of 10 ft-lb. has been shown to result in consistent loss damping

factor values, while at the same time causing no damage to the specimen. The calibration

of the apparatus using a low damping material, 2024 T-4 aluminum, and employing this

interface material and bolt torque resulted in loss factor values that were within 2% of the

loss factors determined analytically using the Zener thernoelastic theory.

When utilizing the half power band width technique with materials that have high

damping, i. geater than 60 x 10.4, the tip amplitudes used in the calculation must be

determined. If the loss factors have a magnitude lower than 0.001 in. for more than 25%

of the sample time, the calculated loss factor will be reduced from the true loss factor for

the material.

A .-. tesr.'.I.j .,uthodology is proposed for determination of the damping loss

factors of composite materials. This methodology is an attempt to minimize external

sources of energy dissipation which occurs in vibration damping tested, such as

aerodynamic and fricuiaal losses and energy dissipated by the resultant excitation of testing

apparatus. Specifically, this method calls for the partitioning of the tip displacement vs.
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time information into 512 data point sets. The loss factor is determined as a function of the

maximum beam vibration amplitude in each interval. A linear fit is then performed on this

data, with the fit being extrapolated to zero displacement. This extrapolation is a quantitative

way to extract the external sources of energy dissipation from the beam vibration response.

This zero displacement loss factor value is then assumed to be the material loss factor.

In general, the three in-plane loss factors of the glass/epoxy composite are greater

than that of the graphite/epoxy in the frequency range up to 1000 Hz. This trend should

also carry over to other composite laminated orientations. The material loss factors for both

systems are at least a factor of two greater than the loss factor of a conventional structural

metal, such as steel or aluminum. In both systems, the 00 orientation loss factor, 1,11,

showed a linear increase as the frequency increased. The transverse and shear loss factors,

1122 and T" 12, showed a nonlinear increase as the frequency increased.
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Chapter 9

FUTURE WORK

Throughout the course of this research, numerous concerns were raised, investigated

to a reasonable extent, and put aside as additional efforts that should be considered

concerning the vibration damping testing of composites. A brief description of some of

these issues follow.

Embedded Fiber Optic Displacement Sensor

In the determination of the damping loss factor of composites using the half power

band width method, it is necessary to determine the amplitude of vibration of the end of the

beam. Conventional techniques can only approximate this amplitude since the end of the

beam alone can not be physically measured. All sensors require a finite volume of material

on which to perform their measurement, such as for an accelerometer, strain gage or

noncontact eddy current probe. In addition, these sensors in actuality measure average

displacements in an indirect manner.

An alternative technique was briefly investigated as pan of this research. This

technique utilized an embedded optical fiber at the center of the beanm. The optical fiber is

cut incident with one end of the beam and is allowed to extend from the other end. A
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helium neon laser is then coupled to the optical fiber. The light is guided through the

optical fiber and exits the composite end. This light, visible to the unaided eye, can be

detected by an array of optical sensors. Depending on the size of the sensors, the motion

of the light exiting the embedded optical fiber can be accurately monitored. With the use of

high-speed A-D data acquisition systems, a very accurate characterization of the beam tip

displacement can be made. In addition, the displacement is measured using first principles,

unlike the other techniques that are normally utilized. Accuracy can also be enhanced by

increasing the distance froni the beam end to the sensor.

This technique was investigated using equipment at the Fiber Optic Research Center

at Virginia Polytechnic and State University. Composite specimens were made with

embedded sensors. Two configurations were utilized. One was a 30' off-axis beam and

the other was a unidirectional configuration. The off axis configuration was utilized since a

bending twisting coupling should occur when it is subjected to a bending moment. It was

hypothesized that this technique would be able to measure the degree of twist by utilizing

two embedded optical fibers, one in the center of the beam width and one spaced 1/4 of the

width away from an edge. If a twist occurred, the light should trace out an arc on a plane

perpendicular to the end of the beam.

The sensor used to monitor ,the light exiting the optical fiber was a 512 by 512 array

of optical detectors, which had planar dimensions of 0.5 x 0.5 in. This was coupled to a

minicomputer with the sensor output being displayed on a CRT screen. At the time this

investigation was carrded out, the position of the incident light could not be digitally stored

to a file. The response, however, could be visually monitored.
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The results of this qualitative investigation were that the tip displacements and the

degree of twist were measurable. In addition to its use as a sensor for damping

measurements, this technique could also be utilized to nondestructively monitor the

structural integrity of composite components. This would be done using the following

procedure. Consider the composite wing of an aircraft such as the AV-8B. Initially, the

vibrational response of this component would be measured by ultrasonic excitation. The

resonant frequency could be determined as well as the damping loss factor. After a given

period of service, the wing could be excited at the same location as was previously used

and the resonant frequency and damping loss factor could be determined. If these were

different than the original values, it would be hypothesized that some structural degradation

had occurred. This could be quantitatively determined by backing out the component

stiffness from the resonant frequency.

A more complete description of this technique has previously been published (77). In

addition, a patent is currently pending (78).

Effects of Defects

In Chapter 2, mention was made of experimental work showing the effect of defects

on the damping loss factors of composites. Plunkett (36) shows that the loss factor of

composites increases as the transverse crack density increases. Other defects can also

dissipate energy through the friction that occurs at the resulting interface. An investigation

could be undertaken to determine the energy dissipated per area of defect
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In this investigation, si-nulated delaminations could be fabricated in a section of a

composite panel. Specimens with and without the defect would be cut from the panel and

tested. The energy dissipated pei area of defect could then be determined from the

difference in the losses obtained from the two configurations.

This investigation could then be generalized to other defects, such as cracks.

Transverse cracks can be easily created in composite panels by using a cross-ply

configuration. Various densities of transverse cracks can be achieved by loading the

material in tension to a predefined strain. The loss factor could then be determined as a

function of transverse cracks. The dissipation per unit area from the transverse cracks

could then be compared with that obtained from the delamination sample. This may lead to

a universal dissipation of energy per unit volume of defect.

Effect of Beam Orientation on Damping Loss Factor

The initial experimental investigation to determine the damping loss factor of

composites used the beam configuration that is commonly used in the literature, i.e. a

horizontally oriented beam. The three in-plane composite material loss factors were

determined in the frequency range of interest. The results of these efforts have been

published elsewhere (67,79).

The results that were obtained at low frequencies, i.e., long beam lengths, for beams

which had a low bending stiffness gave results that were not consistent with results

reported elsewhere in the literature. What was occurring was a significant increase in loss
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factor as the frequency decreased. In some cases, this increase was as high as a factor of

two. One possible explanation would be that aerodynamic damping was iafluencing the

results. However, for the aluminum beam, this did not occur. The aluminum beam had a

much higher section stiffness than the composites that were affected. The 0' unidirectional

graphite/epoxy also did not show this increase. This would discount the statement that the

effect was caused by aerodynamic damping.

What may be occurring instead is an inci-eased damping caused by gravitational

effects. This can be shown to be a plausible explanation by considering one cycle of

vibration. Without loss of generality, assume that the beam is initially excited downward.

The beam's acceleration, and therefore displacement, is the result of the combined excitation

force and the force due to gravity. After the beam reaches its maximum displacement, the

energy stored in the beam causes a restoring force to act upward. This results in the

acceleration of the beam which now has the gravitational acceleration acting against it. The

resultant displacement is therefore less than it would have been in the absence of gravity.

Since the displacement is less, the stored energy in the material is less. The restoring force

to which the beam will respond will cause an acceleration which is less than it would have

been in the absence of gravity. As such, the resultant displacement downward is less.

Since the amplitude of vibration is reduced with each subsequent motion, the apparent

loss factor becomes greater. It is hypothesized that this effect is more pronounced on

beams which have low stiffness. When the beam is oriented vertically, the gravitational

force acts equally for each direction of motion. This is why the vertical beam orientation

was used in this research. A comparison of the loss factor measuiement in these two
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orientations are given in references 80 and 81.

This effect could be experimentally modelled in the following manner. First, a

composite specimen that has demonstrated a variation in loss factor when using a horizontal

orientation compared to that obtained using a vertical would be fabricated. The loss factor

would be determined using the horizontal orientation. These same specimens would be

placed in the vertically oriented apparatus. The loss factor would then be determined.

Before removing the specimen from the apparatus, a very compliant spring would be

attached to the specimen. The loss factor would then be determined with this additional

directional force applied. If the loss factor results were shifted toward the results obtained

using the horizontal orientation, this would qualitatively demonstrate this phenomenon.

This would have a dramatic impact on damping testing, since currently the majority of

the testing that is performed utilizes the horizontal beam orientation.

Damping Optimization using Hybrid Composite Design

The experimental investigation conducted in this program utilized specimens

fabricated using one material system. What was not considered was the effect of

hybridization on the damping loss factor.

The utilization of two distinct fibers in a composite has led to some interesting

material properties. An example is the hybrid effect, the apparent improvement in tensile
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strength from what would be anticipated using maximum stress theories. Although this can

be explained by considering the effect of the difference in coefficients of thermal expansion

of the two fiber systems, there is a synergistic enhancement of the composite strength.

The damping loss factor that may occur as a result of these residual stresses is

unknown. The variation in coefficients of thermal expansion between adjacent layers of

glass and graphite laminae should result in a shear stress through the matrix. This may result

in added energy dissipation, since a maximum energy dissipation occurs through shear.

The most effective way to investigate the effect of hybridization on loss factor would

be analytically. In this case, the modification to the analytical model would need to be

twofold. First, the incorporation of residual stresses would need to be addressed, which

may resuit in a damping equivalent hybrid effect. Secondly, the model modification would

have to include three-dimensional stresses, such as the interlaminar and through-thi'zkness

shear stresses. A discussion on the three-dimensional exten4-ion to the model developed in

Chapter 3 is given in the next section.

In addition to the modification to the analytical model, an experimental investigation

would need to be undertaken. This would allow for the model modifications to be verified.

Generalized 3-D Elastic Viscoelastic Model

In the development of the analytical model given in Chapter 3, the plane stress
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assumption was utilized. 'This reduced the complexity of the analytical model from a three

dimensional problem to a two dimensional problem. If this simplification was not made,

the development would have continued using the identical formulations. For the effort

undertaken for this research, since thicknesses were small, the through thickness stresses

can be assumed to be negligible.

For various structural applications, as the thickness of the material is increased, the

need for incorporation of die through thickness stresses increases. When these thick

stiuctures are excited, their response will be governed by the three-dimensional elastic

properties of the material. Likewise, the damping response will be governed by the

three-dimensional loss factor characteristics.

An analytical three-dimensional model has been proposed by Trethewey and coworkers

(82). In this development, the Qij terms have been determined as a function of the elastic

properties of the composite. A generalized 3-D damping model could be readily proposed

using the elastic viscoelastic correspondence principle, and making the substitution of the

complex moduli for the real moduli given by Trethewey and coworkers (82).

With knowledge of the material loss factors in three dimensions, which for this case

would mean the determination of the through thickness loss factor as a function of

frequency, the reduced stiffnesses for a specific laminated stacking sequence can be

determined. The energy dissipation that the structure would experience then could be

determined by incorp)orating the appropriate loss factor in the structural analysis routine.
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Appendix A

Annotated Copy of Data Collection Program

' QBEX6.BAS DAS16 Example of MODES 0, 1, 6, 7, 8, 9, 17

MetraByte Corporation for QuickBasic 4.0 9-7-88

DIM DIO%(4)
DIM DT%(12000), CH%(12000) 'set up integer arrays for data/channel #

COMMON SHARED DIO%O, CH%0, DT%()
DECLARE SUB DASI6 (MODE%, BYVAL dummy%, FLAG%)

'$DYNAMIC
DIM dat%(12000)
'$STATIC

5 print "THE DATE OF THIS PROGRAM UPDATE IS 11/19/90, NEW CALIBRATION"
10' THIS PROGRAM IS THE DATA AQUISITION PROGRAM FOR THE VIBRATION DAMPING
20' PROJECT. THIS IS SET UP TO READ CHANNEL 0 AS Ti iE DISPLACEMENT SENSOR
30' AND CHANNEL I AS TIHE FORCE HAMMER. THE PROGRAM TAKES DATA AT YOUR
40' PRESCRIBED RATE AND WRITES IT TO A DATA ARRAY, CH% AND DT. THE PROGRAM
50' PLOTS THE ABSOLUTE VALUE OF THE LOG OF THE DISPLACEMENT VS. TIME. THE
60' DATA CAN BE SAVED IN EITHER THE DIGITAL VALUE FORM (-2048 TO 2047) OR
70' CAN BE SCALED BEFORE BEING SAVED TO A FILE. THE DIGITAL DATA FILE NAME
80'WILL BE VIBDATA.DAT WHILE THE SCALED DATA WILL BE VIBDATA.PRN. THE
PROGRAM
90' WILL ALLOW YOU TO MAKE THE APPROPRIATE SCALING FACTOR CHANGES.
91' THIS PROGRAM SETS THE ZERO POINT OF I7HE SYSTEM TO 30 MILS FROM THE
92' SPECIMEN. WITH A 20 MIL OFFSET.

110' THIS PROGRAM IS CALLED VIBDAMP.BAS
120'1
125 'DIM DT%(12000)
126 'DIM CH%(12000)

238
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127 KEYPRESSED = 0
128 CLS
130'
140' LOAD DASH16.BIN DRIVER
150'
160 'DEF SEG = &H5000
170 'BLOAD "C:\ILS\DAS\DASH16.BIN", 0
180'
190' *** INITIALIZE WITH MODE 0
200'
210 MD% = 0
220 DIO%(0) = &H330 'SET I/O ADDRESS
230 DIO%(i) = 2 'SET INTERRUPT LEVEL
240 DIO%(2) = 3 'SET DMA LEVEL
250 FLAG% = 0
260 'DASHI6 = 0
270 'CALL DASHI6 (MD%, DIO%(0), FLAG%)
275 CALL DAS16(MD%, VARPTR(DIO%(0)), FLAG%)
280 IF FLAG%<>0 THEN PRINT "INSTALLATION ERROR":STOP
290'
300' *** SET MULTIPLEXER SCAN LIMITS
310 MD% = 1
360 PRINT
370 PRINT" ATIACH THE OUTPUT FROM THE EDDY CURRENT PROBE TO CHANNEL 0"
380 PRINT" AND THE OUTPUT FROM THE FORCE HAMMER TO CHANNEL 1"
390 INPUT " AFTER DOING THIS, HIT ANY KEY "Z$
395 CLS
400 DIO%(0) = 2
410 DIO%(1) = 2
420 'CALL DASH16 (MD%, DIO%(0), FLAG%)
425 CALL DAS 16(MD%, VARPTR(DIO%(0)), FLAG%)
430 IF FLAG%c>0 THEN PRINT "ERROR # ";FLAG%;"IN SEITING SCAN LIMiTS":STOP
440'
450' *** DO ONE A/D CONVERSION AND INCREMENT MUX
460'
470 PRINT
530' *** DO 1266 A/D CONVERSIONS AND PRINT AVERAGE
540 PRINT
550 PRINT " THE FOLLOWING SECTIONS WILL ALLOW "'OU TO ADJUST ZERO FOR THE"
560 PRINT" EDDY CURRENT PROBE. ADJUST THE VERNIER FOR THE PROBE HOLDER"
570 PRINT" UNTIL THE OTYPUT IS CLOSE TO 0. THEN HIT ANY KEY TO CONTINUE"
580 WHILE NOT KEYPRESSED
590 MD% = 17
600 DIO%(0) = 10' DIVIDE 10 MHz BY 10 TO GIVE IMHz FREQUENCY
610 DIO%(!) 13' DIVIDE 1 MHz BY 12 TO GIVE 83.3 KHz FREQUENCY
620 FLAG% = 0
630 'CALL DASH 16 (MD%, DIO%(0). FLAG%)
635 CALL DAS16(MD%, VARPTR(DIO%(0)), FLAG%)
640 DIO%(0) 1266
650 DIO%(I) = &H6800 'SEGMENT OF MEMORY TO RECIEVE DATA
655 DIO%(1) = VARSEG(DAT%(0)) 'SEGMENT JF MEMORY TO RECIEVE DATA

Il
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660 DIO%(2) = ) 'INDICATES TYPE OF TRIGGER; I TIMER, 0= EXIERNAL TRIGGER
670 DIO%(3) = 9 -0 = ONE CYCLE. 1 = RECYCLE
675 'CALL DASHI6 (MD%, DIO%(0), FLAG%)
680 MD% = 6
695 CALL DAS 16(MD%, VARPTR(DIO%(0)), FLAG%)
700 MD% = 8
7C5 CALL DAS16(MD%, VARtI'R(DIO%(0)), FLAG%)
710 'CALL DASHt6 (MD%, DIO%(0), FLAG%)
720 IF DIO%(I) = 1 THEN GOTO 700
730 'MD% = 9
740 DIO%(0) 1266 'NUMBER OF WORDS TO TRANSFER
750 'DIO%(1) = &H6800 'SEGMENT OF MEMORY TO TRANSFER FROM
755 DIO%(1) VARSEG(dat%(0))
760 DIO%(2) 0 'SET TRANSFER TO BEGIN AT BEGINNING OF SEGMENT
770 DIO%(3) VARPTR(DT%(0)) 'TO START TRANSFER AT BEGINNING OF ARRAY
780 DIO%(4) - VARPTR(CH%(0)) ' CHANNEL THAT DATA IS ?ROM
785 'C kLL DASH 16 (MD%, DIO%(0), FLAG%)
787 MD% = 9
789 CALL DAS 16(MD%, VARPTR(DIO%(0)), FLAG%)
790 IF KEYPRESSEDS<>"" THEN KEYPRESSED=-I
800 SUM = 0
810 FOR I = I TO 1266
820 SUM = SUM +DT%(I)
830 NEXT I
840 ZERO=- SUM/1266
845 ZERO = ZERO - 122.82
850 I.OCATF 15.20
860 PRINT USING "###.###";ZERO
870 KEYPRESSED$=""
880 KEYPRESSED$=INKEY$
890 WEND
895'
896' *** SET MULTIPLEXER SCAN LIMITS
897 MD% = 1
898 DIO%(0)= 2
399 DIO%(I) = 3
900 'CALL DASH16 (MD%, DIO%(0), FLAG%)
903 CALL DAS 16(MD%. VARPMR(DIO%(0)), FLAG%)
905 IF FLAG%<>0 THEN PRINT 'LRROR # ";FI.AG%;"IN SETTING SCAN L.IMITS":STOP
909'
910' *** SET PROGRAMMABLE TIMER RATE USING MODE 17
920)' SO THAT TIMER CAN BE SET rO MAX. VALUE
930' NOTE THAT CURRENT TIMNT FOR 2 CHANNEL SCAN IS 1.30 E-5 SEC."
940'
950 PRINT "DO YOU WANT TO CHANGE THE VALUES FOR THE PROGRAMMABLE TIMER"
960 PRINT ' TiE CURRENT SETTING IS FOP, A FREQUENCY OF 76.9 KHz. THIS IS"
970 PRINT" "lhriE MAXIMUM FREQUENCY. ANY NEW FREQUENCY WILL BE LOWER THAN
980 INPUT ' THIS. DO YOU WANT 1-O CHANGE FREQUENCIES ";A$
990 PRINT
I000 IF A$= "N" OR AS ="n"THEN GOTO 1140
1010 PRINT" TO SET A NEW FREQUENCY, INPUT TWO NUMBERS WHICH WILL"
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1020 PRINT" BE DIVIDED INTO 10 MHz THAT WILL RESULT IN THE FREQUENCY"
1030 INPUT" THAT YOU DESIRE; A,B (CURRENT DIVISOR IS 130) ";D,V
1040 K = D*V
1050 PRINT
1060 TI#= 1E+07/K
1070 IF K>=130 GOTO 1170
1080 PRINT
1090 PRINT" YOU MUST CHOOSE A DIVIDE BY GREATER THAN 130 IN ORDER TO"
1100 PRINT" COLLECT DATA CORRECTLY. PLEASE INPUT VALUES WHICH HAVE A"
I 110 PRINT" PRODUCT GREATER THAN 130 !!!
1120 PRINT
1130 GOTO 1010
1140 D=5
1150 V= 26
1160 TI#= IE+07/130
1170 MD%= 17
1180 DIO%(O) = D ' DIVIDE 10 MHz BY 10 TO GIVE 1MHz FREQUENCY
1190 DIO%(1) = V 'DIVIDE 1 MHz BY 12 TO GIVE 83.3 KHz .'REQUENCY
1200 FLAG% = 0
1210 'CALL DASHi6 (MD%. DI%(0), FLAG%)
1215 CALL DA S6(MD%, VARPTR(DIO%(0)), FLAG%)
1220'
1230' *** DO N A/D CONVERSIONS AND TRANSFER TO MEMORY VIA DMA - MODE 6
1240 '
1250 INPUT "ENTER NUMBER OF CONVERSIONS DESIRED (UP TO 12000): ",M
1270 PRINT
1280 PRINT "THE SYSTEM WILL BEGIN TAKING DATA FROM ASSIGNED CHANNELS"
1290 INPUT "WHEN READY, STRIKE ANY KEY AND DATA COLLECTION WILL BEGIN ",AS
1300 DIO%(0) = M
1310 'DIO%(1) = &H6800 'SEGMENT OF MEMORY TO RECIEVE DATA
1315 DIO%(1) = VARSEG(dat%(0))
1320 DIO%(2) I 1 'INDICATES 'IYPE OF TRIGGER; I = TIMER, 0= EXTERNAL TRIGGER
1330 DIO%(3) =0 ' 0 = ONE CYCLE, 1 = RECYCLE
1340 MD% w 6
1350 'CALL DASH16 (MD%, DIO%(0), FLAG%)
1355 CALL DAS 16(MD%, VARPTR(DIO%(0)), FLAG%)
13W0 MD% = 8

1370 'CALL DASH 16 (MD%, DIO%(0), FLAG%)
137b CALL DAS16(MD%, VARPTR(DIO%(0)). FLAG%)
1380 IF DIO%(I) = 1 THEN GOTO 1360
139.0'
1400 PRINT CHR$(7)
1410'
1420 "*"* TRANSFER DATA FROM MEMORY TO ARRAY USING MODE 9
1430 MD% = 9
!440 DIO%(0) = M 'NUMBER OF WORDS TO TRANSFER
1450 'DIO%(I) = &H6800 'SEGMENT OF MEMORY TO TRANSFER FROM
1455 DIO%(I) = VARSEG(dat%(0))
1460 DIO%(2) =0 'SET TRANSFER TO BEGIN AT BEGINNING OF SEGMENT
1470 DIO%(3) = VARPTR(DT%(0)) ' TO START TRANSFER AT BEGINNING OF ARRAY
148C DIG%(4) = VARPTR(CH%(0)) 'CHANNEL THAT DATA IS FROM
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1490 'CALL DASH 16 (MD'D%. DIO%(0). FLAG%)
1495 CALL DAS 16(MD%, VARPTR(DIO%(0)), FLAG%)
1500 PRINT CHR$(2)
1510'
1520' READ DATA FROM MEMORY SEGMENT AND PRINT GRAPHICS, LOG(DISPLACEMENT)
1530' VS. TIME AND FORCE VS. TIME
1540'
1545 Q=0
1550 FOR I = 1 TO M-1 STEP 2 'SEARCH HAMMER ARRAY FOR WHEN VALUE
1560 IF DT%(I) < 250 THEN GOTO 1600 'REACHES A PRESET VOLTAGE INDICATING
1565 IF '<22 GO'O 1610
1570 B = I - 21 ' HAMMER IMPACT. STORE ARRAY NUMBER AS B
1580 Km (M-B)/640 'K SCALES TIME TO FIT ON X-AXIS
1590 GOTO 1620
1600 NEXT I
1610 B = 20
1615 K = (M-B)/640 K SCALES TIME TO FIT ON X-AXIS
1620 Q=O
1625 j = 0
1630 FOR I = B TO M-I STEP 2 'SEARCH FOR MAXIMUM VALUE OF DISPLACEMENT
1640 IF ABS(122.82-DT%(i)) < Q THEN GOTO 1660 'SO THAT GRAPHICS CAN BE SCALED
1650 Q = ABS(122.82-DT%(I))
1655 j = i
1660 NEXT I
1670 R#=Q/50
1680 INPUT "DO YOU WANT TO PLOT LOG(DISPLACEMENT) VS. TIME ";AS
1690 IF AS ="N" OR AS ="n" THEN GOTO 1820
1700 CLS:SCREEN 2:KEY OFF
1710 W = (LOG(Q))/100 'W SCALES DISPLACEMENT TO FIT ON Y-AXIS
1720 FOR I = B TO M-I STEP 2 'LINES 1230 - 1410 PLOTS DISPLACEMENT
1730 Z = ABS(DT%(I)- 122.82) 'AND FORCE VS. TIME USING LOG PLOT
1740 IF Z = 0 THEN GOTO 1780
1750 L = LOG(Z)
1760 PSET ((I-B)/K, (100 - 0-/)))
1770 GOTO 1790
1780 PSET ((I-B)/K, 100)
1790 PSET ((I-B)/K, (190-(DT%(I+ 1)/23)))
1800 NEXT I
1810 INPUT "",A$
1820 INPUT "DO YOU WANT TO PLOT THE SAME DATA USING DISPLACEMENT VS.
TIME";A$
1830 IF AS = "N" OR AS = "n" THEN GOTO 1900
1840 CLS:SCREEN 2:KEY OFF
1850 FOR I = B TO M-1 STEP 2
1860 PSET ((I-B)/K, (((DT%(I)- 122.82)/R#))+5 1)
1870 PSET ((I-B)/K, 5!)
1890 PSET ((I-B)/K, (195-(DT%(I+1)/23)))
1885 PSET ((I-B)/K. 195)
1890 NEXT I
1900N =M-B
1902 MI = 0.0984241"(Q/409.6)+ 3.000045E-4 'CALIBRATION AS OF 11/16 90
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1903 'M1 = 4.69312E-02*(Q/409.6)+7,59419E-04 'calibration as of 10/23/90
1904 M1 = 4.02424E-02*(OJ409.6)-l.883607E-04 'calibration as of 6/26/89
1905 PRINT " MAX DISPLACEMENT IS ";MI
1910 INPUT "",A$
1920 PRINT "NUMBER OF DATA POINTS IS ";N
1925 PRINT
1930 INPUT "WOULD YOU LIKE TO CHANGE THE START OF THE DATA ";AS
1940 IF AS = "N" OR A$ = "n" THEN GOTO 1970
1950 PRINT "THE CURRENT VALUE OF THE START FOR DATA IS ";B
1960 INPUT" ENTER NEW VALUE FOR START OF DATA TRANSFER ";B
191•0 CLS:SCREEN 0
1980'
1990 '*** TRANSFER DATA
2000'
2010 PRINT " THE DATA WILL NOW BE PRINTED TO A FILE. INSERT A DATA DISK IN"
2020 PRINT" DRIVE A. INPUT THE NAME YOU WISH TO CALL THIS FILE"
2030 PRINT" PLEASE USE THE EXTENSION OF 'PRN' FOR YOUR FILE ';

2040 INPUT "" FILE$
2042 B$ = ":"
2044 IF INSTR(FILE$,B$) = 0 THEN GOTO 2047
2045 C$=FILE$
2046 GOTO 2050
2047 A$="A:"
2048 C$=A$+FILE$
2050 PRINT
2060 PRINT " CURRENT ARRAY WILL BE TRANSFERRED TO A FILE, ";C$
2065 PRINT
2070 PRINT" YOU CAN SCALE THE DATA OR PRINT THE DIGITAL DATA TO THIS FILE"
2075 PRINT
2080 PRINT " THE SCALING FACTORS ARE CURRENTLY SET WITH A"
2085 PRINT" SLOPE AND INTERCEPT FOR DISPLACEMENT OF 4.69312E-2 AND"
2087 PRINT " 7.59419E-4, RESPECTIVELY. DO YOU WANT TO PRINT THE DIGITAL"
2090 PRINT" SLOPE AND INTERCEPT FOR DISPLACEMENT OF 4.02424E-2 AND"
2100 'PRINT "-1.883607E-4, RESPECTIVELY. DO YOU WANT TO PRINT THE DIGITAL"
2130 INPUT "DATA TO FILE";A$
2140 IF A$="Y" OR A$="y" THEN GOTO 2340
2145 PRINT
2150 PRINT "DO YOU WANT TO CHANGE THE SLOPE AND INTERCEPT OF THE EDDY"
2155 INPUT "CURRENT PROBE FROM 4.69312E-2 AND 7.59419E-4, RESPECTIVELY";A$
2160 'INPUT "CURRENT PROBE FROM 4.02424E-2 AND -1.883607E-4, RESPECTIVELY";A$
2170 IF A$ = "N" OR AS = "n" THEN GOTO 2210
2180 PRINT
2190 INPUT " INPUT NEW SLOPE AND INTERCEPT IN FORMAT, SI ";S#,E#
2200 GOTO 2230
2210 'S#= 4.02424E-02
2212 E#= -1.883607E-04
2214 S# = 0.0984241
2216 E# = 3.000045E-4
2218 'S#= 4.69312E-02
2220 'E#= 7.59419E-04
2222 PRINT "THE CURRENT NUMBER OF DATA POINTS THAT WILL BE PRINTED IS ";M-B
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2223 PRINT "DO YOU WANT TO CHANGE THE NUMBER OF DATA POINTS STORED";
2224 INPUT "",A$
2225 IF AS="N" OR AS "n" THEN GOTO 2230
2226 PRINT
2227 PRINT "INPUT THE TOTAL NUMBER OF POINTS THAT YOU WANT TO STORE";
2228 INPUT "",V
2229 M=B+2*V
2230 OPEN CS FOR OUTPUr AS # 1
2240 PRINT #1,"THE FREQUENCY OF TEST IS ";TI#/2
2250 PRINT #1,"TIHE TIME INTERVAL BETWEEN DATA POINTS IS ";2/TI#
2260 FOR I = B TO M STEP 2
2270 DT# = DT%(I)/409.4
2280 DT# = S# * DT# + E# - .03
2290 PRINT #1,DT#
2300 NEXT 1
2310 CLOSE #1
2315 N = (M-B)/2
2316 PRINT
2320 PRINT "THE NUMBER OF CONVERSIONS THAT HAVE BEEN MADE IS ";N
2330 GOTO 2435
2340 PRINT "THE DIGITAL DATA WILL BE STORED IN FILE ";CS
2350 PRINT "THE NUMBER OF DATA POINTS ARE ";M-B
2360 OPEN CS FOR OUTPUT AS #1
2370 PRINT "THE FREQUENCY OF DATA ACQUSITION IS ";TI#/2
2380 FOR I = B TO M-I STEP 2
2400 PRINT #1, DT%(I)
2410 'PRINT # 1,T#;DT%(I);DT%(I+ 1)
2420 NEXT I
2430 CLOSE #1
2435 PRINT
2440 PRINT "WOULD YOU LIKE TO RUN THIS PROGRAM AGAIN?";
2450 INPUT "",M$
2460 IF M$ = "Y" OR M$ = "y" THEN GOTO 127
2470 END



Appendix B

Half Power Band Width Development

The analytical technique that is used for the determination of the damping loss factor

is called the half power band width method. In this technique, the loss factor is determined

as the ratio of the difference in frequencies at which are -3dB of the value of the frequency

response at resonance and the resonant frequency. The loss factor is then given as

A f,afr

The derivation of this relationship as a way in which the loss factor can be

deteremined is not intuitively obvious. As such, a derivation will be given in the

following.

Consider a beam which is subjected to a transverse displacement caused by a force

Fo(x)S(x) appled at the free end of the beam. The equation of motion which describes this

beam is

EIa L +pA a Fo,(X)
Sx4 a t2  2

where 8(x) is the Kronecker delta function. This function has the following values,
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S(x) = 1 when x equals 0 and 8(x) = 0 when x is not equal to 0. In this application, after

the removal of the force, the beam response is given as

El8 - x p A - = 0
x 4 3

To solve equation 3 to obtain a description of the beam transverse motion, a solution

is assumed which is of the form

w (x,t) - w(x) e im 4

Substituting equation 4 into equation 3, using the relations as follows

"a=i t -OW(x)ei"5

-(..w _02 W(x) elo0tt 2

0 w iatd 4 w 6

S4 d x4  7

we obtain

E laei"t dw _ eiwt 2 pAW =0
dx 4

or

d4w (A PA =
dx4  lEIa 9

For low loss viscoelastic materials, it is assumed that the free vibrations are

approximately harmonic. In equation 9, the real modulus, E, is then replaced with the
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complex modulus, E*. Using the relationship

, p AI'?0•4 =PA1-0

E%•, 10

and substituting into equation 9, the differential equation of motion becomes

dx 14 11

A solution to this ordinary differential equation is assumed to be of the form

W = C1 sin-a + C2cos-x + C3 sinh2- + C4 cosh-•

12

The boundary conditions required for the determination of the constants in equation

12 are at the c1rmpeA end of the beam

dw
W=O and d-=0 at x=ldx 13

while at the free end of the beam

d2 w d3 w-=0 and --- =-0 atx=0
dx dx 14

2d2w
Solving -- = 0 at x = 0, results in

d x2

2 2 20=C" sin--- C2 Cos- + C3 sinh-. + C4 E coshQ-

1 1 1 15
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or

2 •2

0=-C 2 7 +C 4 - 1

or C2 = C4 . Substituting this into equation 12 results in

W = C, sin.2 + C2CoST- + C 3 sinh2-- + C2 cosh2-I I + 1 17
3w

Solving w = 0 at x = 0, in equation 17 results ind x3

aL3  a x ot3 ax a3 a 3 as.x0= --- cos-T--+ C2 13-cos-.- + C3 -2- sinh- + CA2-c- 181 18

or
°3 °3

o -C1 a- 3

13 1 19

or C1 = C3. Substituting this into e(,uation 17 results in

W =C snx+ C2cos sinh- C, cosh
+Itsi-s+n+( - + 1 s 20

Using the boundary condition that W = 0 at x = 1, equation 20 becomes

0 = C1 sin a + C2cos (x 4 C1 sinh (x + C2 cosh o( 2.1

dw
Using the boundary condition that = 0 at x I in equation 20 resuhs ýn

0 =-C 1 cos ox- C-2 sin (x + C1 cosh a + CG siah ac 22

Using equations 21 to solve for C1 and substituting this into equation 22 yields
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C2 (COS (x + cosh t)2
0- (sin +xsinh) + C2 (sinh a-sirlct) 23

or

C2 (cos CC + cosh a) 2  (sinh a - sin cc ) (sinh ct + sin c)
(sina + sinh ct ) (sinh a + sin c ) 24

The only nontrivial solution to the equation occurs for nonzero C2, when the

numerator of equation 24 is zero or when

0 =- cos2 a - 2 cos a cosh cx - cosh2 a + sinh2 a - sin2 a 25

Using the trigonometric identities where

I . 2. 1 1 .22
,sin ct + COS (x ) = I and (cosnhx - sinhux) = 1 26

in equation 25, ihe solution becomes

cos ac cosh ot = -1 27

There ame therefore an infinite number of solutions to equation 27. For each Ocn, there are

associated constants Cn which form the solution to equation 3.

The displacement of the beam at any position x can be normalized relative to the free

end of the beam by dividing by Wn(0). The value of Wn(0) is 2C2 as can be readily seen

by substituting x = 0 into equation 20. The normalized beam displacement is then given as
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Wn(x) 1 a0tx LXnx 1aCl ctnx 0,x
- cos- +cosh , )+ -- ln sin - +sinh --"28Wn(O) 2. 1 1 C ~ 1 28

where

Cln sin tn + sinh a,,
C = sin a. cosh an -cos an sinh a. 29

Substitution the values of an for a in equation 10, making the additional substitution

that the complex modulus E* = E' (1 + irI) results in

pA 1
4 (o2

E•(1 + ill) Ia 30

Since the modulus is complex, the frequencies are also complex. The substitution is

therefore made where fl* = (op' + i oan" into equation 30 which results in

pAl_ 4  co°n -0) n+ 2i U n W ni

n a E (1 + irj) 31

Separating the real and imiaginary parts of equation 31 results in

E'= (W' _ 0) , .,2
p 4l n )

laoy• 32

2 0'nO)"n

.2 
,.2

'0n-W n 33

Solving now for the particular solution to the transverse displacement resulting from

an applied force, we have as the equation of motion
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Ma a +pA - =Fo8(x)eicOta x 4 a t2 334

Following the same development as was performed for the complimenuary solution to

the beam equation, the solution to equation 34 can be written in terms of a series as

S4F° W,,(x) e"'•

W(x,t) = p A1 Wn(0) e ( 2'

n=1 (on W)3

Using the realtionship co* = On' + i con." , the value of (oj* 2 - (t)2) is given as

*2 2 -2 "-2 2o,2_ -o) = n -(on + 2io o (j - (t 36

*2 2 12 -- •2-0__ 1 +2i
+ 1no o 

37

But 2 Wn W I. Substituting this into equation 37 yields

*2 2- 2 2(n2 1 02__

38

Substituting equation 38 into equation equation 35 yields

4F° Wn(x) ,i O t
W(x,t) *= 1.2 Wn O( 2 \

e ns for ) that pr y d39

Using the relationship for E' that previously derived in equation 32, we have that
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4Fo 4 Fo 13

p A 1 (uo - w0,) E' 1nla 40

Substituting this into equation 39 yields

4 FOl3 W.(x) ei 0t

W(x,t) = 4 WI(O) - 2 214
E=d E a on 4 a t

41

Expanding part of equation 41 we have that

4n 1 W2 (_=2 " 4
nl ~ J f 2) "2) +ITc.

(on -(n (wh -con ) 42

Using equation 32 and rearranging terms we have that

4 14
C•n p A 1

,2 _,,2

COfn-l n IaE 43

Letting 2 = 2p A I and substituting into equation 42 yields
E la

k: _ (ý2-o ) 44

Substituting equation 44 into equation 41 yields

1 4 F0 13 Wn(x) ei__t

n=1 E La E(O (4_- oD-i02) 45
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For a complex number, the aenominator can be rewritten in polar form as

4 2 4 22 4
ar§- wD + in 1 (n -- )) + (an r,) ei 46

where

tan On 2

47

Substituting this relationship into equation 45 yields

4F13 Wn(x) e
E'~t I Wn(O) 4 22 )21•

n=1 E a [(X- (OD (a.,TI 48

or

w E'I. Wn(x) e
4F01 = w.(0) . •,2_ (o4 ;

n = 1 a n-[O D - "1 T 4 9

From equation 49 it is seen that the amplitude of vibration is proportional to

4 2 22 1
w, (a- -(a o ) + (ain 7 21- 50

A maximum of equation 49 occurs when WD"' = OCn 4 or when

2 l 4

2 _or p A 1~ 4O~•- - an

E la 51

or
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2 aa
pAl 4  

52

where wo is the angular frequency at which the maximum amplitude occurs. The

maximum for the resonant amplitude, Wmax, occurs at tins frequency, WM. At this

frequency, W ax ((cxn4 t1)-1. Letting fl and f2 be the two frequencies on either side of

fm at which

W2 1 2 1 1
(a 11 53

Solving equation 53 for TI yields

TI= 2 2

(C--!)2 " 2rn 54Butf~ -n fin

But (f 2 _ I (f2n + fi) -- fn). In addition, using the approximation f2+4 fi 2frn in

equation 54 yields

1 2 fn (f2nf - fin) (fI 2 - fl.)
1 2112 --

(C-l)l 2 frn (C-I)7 trn 55

Substituting C = 2 in equation 55, which corresponds to a 3 dB amplitude drop

yields

(f•n - fI,) A fn
frn frr 56

which is the well known half power band width formula.



Appendix C

Annotated Copy of Computer Program to Determine Damping Loss Factor.

10' ***** THE FOLLOWING PROGRAM IS CALLED IORTHOFIT *
20'
30' TIUS PROGRAM PERFORMS A FIT TO DATA IN A DATA FILE FOR A
40' FOUPTH ORDER POLYNOMIAL FIT WITH ORTHOGONAL COEFFICIENTS
50 THE INFORMATION IS READ FROM A FILE AND YOU ARE PROMPTED FOR
60' THE APPROPRIATE INFORMATION. DATA REDUCT"ION DONE IN dB
70'
80 Y =
90 PRINT" IN ORDER TO RUN THIS PROGRAM, YOU NEED TO HAVE A DATIA FILE"
100 FRINT" THAT HAS THE FOURTH ORDER POLYNOMIAL COEFFICIENTS ALONG WI CH"
110 PRINT" THE ALPHA AND BETA VALUES. THEY SHOULD BF INTPUT FOR EACH"
120 PRINT " EQUATION IN TIM FORM:"
130 PRINT" A, B, C, D, E"
140 PRINT" AI. A2, A3, A4, A5"
1aot PRINT 14BI, "0D-, 0"D-i, B4, Dr.O

160 PP.,NT
170 PRINT" WHERE THE FORM OF THE EQUATION IS EX' 4+DXA3-•CXA2+BX+A"
180 PRINT" AND Al - A5 AND BI - B5 'ARE THE ALPHA AND BETA COEFFICIENTS"
190 PRINT" AS DETERMINED USING GRAPHER POLYNOMIAL FIT"
Id PRINT
210 PRINT " INPUT THE NAME OF THE FILE THAT HAS THE COEFFICIENT'S FOR THE"
220 PRiqT" FOURTH ORDER POLYNOMIAL FIT WITH ORTHOGXONAL COEFFICIENTS"
230 PRINT" IN THE FORMAT AS INDICATED ABOVE";
240 INPUT "".AS
250 OPEN AS FOR :NPJT AS #1
260 INPUT h l ,A#,B#,C#,D$,E#
270 INPUT #IA I #,A2#,A3#,A4#,A5#
280 INPUT # !,BI#,B?#,B3#,B4P,B5#
290 INPUT #I,F#,G#,H#,1#Jh
300 INPUT # I,AI 1#,A12#,AI-,.A14#,A15#
310 INPUT #1,B1 I#,B 12#.B 13#,B 14#,B 15#
320 PKINT
330 CLS
340 PRINT" THE COEFFICIENTS FOR THE FIRST EQUATION FOR THE POLYNOMIAL FIT"
350 PRINT " IN TrIE FORM EXF4+DXA3+CXA2tBX+A ARE"
360 PRINT E#;"XA4 + .;D#;'XA3 + ";C4;"'X-2 + ".;B#;"X + ";A#
370 PRINT
380 PRINT" THE VALUES FOR THE ALPHAS IN THE ORTHOGONAL FIT FOR THE FIRSY"
390 PRINT " EQUATION ARE ";AI#;A2#;A3#;A4#;Ai#
400 PRIN F

255
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410 PRINT " THE VALUES FOR THE BETAS IN THE ORTHOGONAL FIT FOR THE FIRST"
420 PRINT " EQUATION ARE ";B 1#;B2#;B3#;B4#;B5#
430 PRINT
440 PRINT " THE COEFFICIENTS FOR THE SECOND EQUATION FOR THE POLYNOMIAL FIr-
450 PRINT " IN THE FORM EXA4+DXIA3+CX-%2+BX+A ARE'
460 PRINT J#;"XA4 + ";l#;'XA3 + ".H#;'XA"2 + ";G#;"X + ";F#
470 PRINT
480 PRINT " THE VALUES FOR THE ALPHAS IN THE ORTHOGONAL FIT FOR THE SECOND"
490 PRINT'" EQUATION ARE ";All#;A12#;AI3#i;AI4#;A15#
500 PRINT
510 PRINT " THE VALUES FOR THE BETAS IN THE ORTHOGONAL MIT FOR THE SECOND"
520 PRINT " EQUATION ARE ";B I I#;B 12#;B13ft;B 14#-B 15#
530 PRINT
540 PRINT " INPUT THE LOWER AND UPPER BOUND FOR THE FREQUENCY FOR WHICH"
550 PRINT" PROGRAM WILL SEARCH FOR A SOLUTION;
560 INPUT -",XL#,XR#
570 XM#=(XL#+XRiF)r2
580 FL#=XL#
590 FR#=XR#
600 CLOSE #1
610 XL4M=E#
620 XL3#=D#-E#*A5#-A4#*E#-A3#*E#-A2#*E#
630 XL2#=E#*A5#A4#-DffA4#+C#-B4#*E#.A3.*7At+A3#*AWE#4FA3#*A4#*F-#
640 XL2#=XL2#-E#*"B3#-A2#*D#+A2#*A5#*EM+A2#*A4#*E#+A2#*A3-#*E#
650 XL2#=XL2#-B2#*E#
660 Xl# A3#*A4#.rn#. A4-A#A4#*~A5NE- '#A#E4*E-3*VA#B#
670 XL#X~#B+2O4*#A#A#A#E-2*#A2*4*#A#A#D
680 XLI =XL I#-A2#*A3r*A5#E#-A2#*A3#rA4#*E#+A2#*B3#*E.B2#*D#
690 XLI#=XLI N+A5#B2#*E#+A4#*82#*E#
700 XL #.-A2#*A3#*Ai~#A5#*E# -A2#'A3N*A4#*~D+A2.#*A3#*C#
710 XLON=~XLO#-A2#rA3#0B4# mE#+A2#rB3#*Dff-A2N*A5#VB3,#E#-A2#*B#
720 X-#=XL0#+A#+A4*t*B2#*D#-A4#*A5#*B2#.Eu*B2N*B44i.E#.B2#rC#
730 XR4#4J#
74u X<R3#=dU-J#OAI 5-A]4#*JN-Al 3#*J#-A12#*~J#
750'%XR2#=J#tA I 5#*A14#-I#*A4#+H#i-Ts]4#*J-A 13r1I#+A I 3#*A15#*J#+A 13#*A]4#rJ
-760 XR2#=XR2#-JN*B1I3#-AI2#*ii+AI2#-'AI 5#*J#+A12#*A 14#*J#+A I2#AI3#*J#
770 XR2#=XR2#-B 12"0Jl#
780 XRI#=AI 3#*AI4#*1#.AI 3#*AI4#OA I5#*i.A1 3*H#+A1I3#*B 14#80-B I3.161N
790 vR#XI+I#A40#A2*l4*I#J-I#H+I# , 4,12N A13#*I#
800 XRI#=XRI#-AI2#'AI3#'A15S'rr-AI2#*AI3#-A14#*J#+AI2#*BI3#' "
810 XRI#=XRI1.A I5#rB 2#*J#,AI4#rB 2#iJ#+AI 5#5 B 3#*J#+G#
820 XRON=AI 2#*AI 34*A14#*AI5#*iu-AI2#"A1 3#*A14r01#+AI2.#.AI 3*H#
830 XR0#=XR0#-AI212A1 3#*B 4#*J#+A I2#*B I 3##-A 2#*A15#*BI 3N*J#.AI2#*G#
840 XR0U=XR0N+F-#+A14ii*B I2#u1#-AI4#*A I 5#B 12#1#+BI2#'BI4e#'#-B 12#'HN
850 PRINT
860 CLS
862 IF Y =I GOTO 870
864 PRINT "IS THE MATERIAL TYPE ";MS;
866 INPUT-.$
867 IF Q%="Y -ORQS = "y" GOTO 890
870 PRINT 'ENTER THE TYPE OF MATERIAL FROM WHICH THIS DATA WAS TAKEN
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880 INPUT "".MS
890 PRINT
892IF Y = 100T0 900
894 PRINT "IS THE BEAM LENGTH STILL ";LS;
896 INPUT -",QS
898 IF Q$ = "Y" OR QS = "y" (30T0 920
900 PRINT"- ENTER THE BEAM LENGTH FOR THIS SAMPLE"
910 INPUT ""44
920 PRINT "INPUT THE VALUE OF X-MID AND XSCAL FOR THE FIRST"
930 PRINT " EQUATION ":
940 INPUT ""¶XMDI#,XSC1#
950 PRINT
960 PRINT "INPUT THE VALUE OF X-MID AND XSCAL FOR THE SECOND"
970 PRINT " EQUATION ";
980 INPUT "",XMD2#,XSC2N
990 CLS
1000 XXLIA=(XLS#-XM'I#)*XSC I#
1010 XAXRLS*=(XL#-XMID2#)OXSC2P
IMO0 XXLMN-r4XM#-XMDI#)-XSCI#
1030 XXRM#=(XM#-XMD2#)-XSC2#
1040 XXLRU=(XR#-XMDI#)*XSCIM
1050 XXRR#=(XR# .XMD2#)XSC2#
1060 VAMtLE= XIAr*XXLM#A4 + XL3#*XXLMNA3 + XL2arXXLM#A2 + XLI#IXXLM# +XLO#
1070 VANMR# XR4#SXXRM#A14 + XR3#*XXRMMA 3 + XR2U*XXCRMUA2 + XR 1#'XXRM# +XRO#
1080 IF VAMR#-VAML*cO GOTO 1170
1090 S=-XR4#-XL4#
I1)00 Th=XIR3#-XL3#
1110 U#=XR2#.XL2#
1120' V#=XRI#-XLI#
1130 W#=XRO#-XLOU
1140)X"= XM#
1150S XMU=(Xl#+XRN)/2
1160 GOTO 1190
1170 XRU= XM#
1180 XM#=QCLN+XR#y(2
1190 IF (XR#-XLh)clE-13 GOTO 1220
i 200 IF ABS(VAMLX-VAMR#)c1IE- 14 GOlTO 1220
1210 GOTO 1000
1220 PRINT "THE SOLUTION TO THE FREQUENCY THAT CORRESPONDS TO THE
INTERSECTION"
1230 PRINT "OF THE TWO QUART1C EQUATIONS IS ";XM#
1240 PRINT
1250 V I#=XR4r*XXRMEA4..XR3#*XXRMUA3 ý.R2*I #A+Rl#XXRM#+XRO#
1260 V2M=XL4r*XXLMEA4+XL3r*XXLM#A 3+XL2#*XXLM#A2+XLINrXXLNIf+XLOU
1270 PRINT"li-E VALUE OF THE AMIPLITUDE FROM EQUATION I & 2"
1280 PRINT "RESPECTIVELY ARE ";.V2#,V1I#
1290 PRINT
I300 FEI#= V2# -3
1310FE2#= VIM -3
1320 LN2#= FIE2#
1330 LNU= FE I#
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1340 XLOI#=XNLO#-LN#
1350 XRO1#=XRO#-LN2$;
1360 XR#=XM#
1370 XL#=FL#
1380 XMI#=(XR#+XL#)t2
1390 XXLL#=(XL#-XMDl#)'XSCI#
1400 XXLM#=(XM1#-XMD1#)*XSCI#
1410 XXRM#--(XR#.XMDI#)*XSCI#
1420 VALM#=XL4#*XXLMN#M + XL3#*XXLM#A3 + XL:2#*XXLM#A2 + XL1#*XXLM# + XL0l#
1430 IF ABS(VALM#)'1E-14 GO0101530
1440 IF (XR#-XL#)<IE-13 GOTO 1530
1450 IF ABS(VALMl#)=VALM[# GOTO 1490
1460 XIA=XM1#
1470 XM1#=(XL#+XR#)/2
1480 GOTO, 1390
1490 XRI!=XMJ#
1500 XM1#=(XR#+XL#)/2
15 10 GOTO 1390
1530 PRINT -THE FREQUENCY CORRESPONDING TO -3dB OF THE PE AK AMPLITUDE"
1535 VALM#=XL4#*XXLM#A4 + Xj3#*XX)M#1A3 + XL2#*XXLM#A2 + XL1#*XXLM# + XLO#
1540 PRINT "OF THE LEFr SIDE OF TH{E PEAK ¶5 ";XM1#;VALM#
1550 PRIN
1560 XLU=XM#
1570 XR#=FR#
1580 XM2#=(XM#+XR#)2?
1590 XXRMN=(XM2#-XMD2#)-XSC2#
1600 VARM#=)CR44#*XXRM#N4 + XR3#*XXRM#A3 + XR2'#*XXRM#A2 + XR1H*XXRMN + XROI#
1610 IFABS(VARM#)clE.14 GOTO 1710
1620 IF (XR#-XL#)<IE-13 GOTO 1710
1630 IF ABS(VAR.M#)=VARM# GOTO 1670
1640 XR#=XM2i#
1650 XM2#=(XL#+XR#)/2
1660 GOTO 1590
1670)XL#XM2#
1680 XM2#=(XL#+XR#)/2
1690 GOTO 1590
17 10 PRINT -THE FREQUENCY CORRESPONDING TO -3dB OF THE PEAK AMPLITUDE"
1715 VARM#=XRW#XXRM#A4 4.* XR3#*XXRM#A3 + XR2#*XXRM#A2 + XR1#*XXRM# + XRO#
1720 PRINT"OF THE RIGHT SIDE~ OF THE PEAK IS ";XM2#;VARM#
1730 PRINT
1740 LF# = (XM2#-XMI#)/XM#
1750 PRINT" THE LOSS FACTOR FOR THIS DATA IS ";LF#
1760 OPEN AS FOR OUTPUT AS #2
1770 PRINT #2,A#,B#,C#,D#,E#
1780 LPRINT A#,B#,C#.D#,E,#
1790 PRINT #2.AIl#,A2#,A3#,A4#,A5#
1800 LPRINT AIU,A2U.A3#.A4#.A5#
1810 PRINT #2,Bl#,B2#,B3#,B4#.B5#
1820 LPRINT B1#.B2#.B3,#.B4#.B5#'
1830 PRINT#2,F#.G#.H#,I#J#
1840 LPRINT F#,G#,H#,1#J#
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1850 PRINT #2,Ai 1#,A12#,A13#,A14#,A15#
1860 LPRINT All#,A12#,A13#,AI4#.A15#
1870 PRINT #2,B11 #,B12#,B 13#,B14#,B15#
1880 LPRINT BI I#,B12#,B13#,B14#,BIS#
1890 PRINT #2.""
1900 LPRINT ""
1910 PRINT #2,"THE LOSS FACTOR FOR THIS DATA IS ";LF#
1920 LPRINT "THE LOSS FACTOR FOR THIS DATA IS ";LF#
1930 PRINT #2,-THE VALUE OF THE PEAK HEIGHT IS "V I#
1940 LPRINT "TfHiE VALUE OF THE PEAK HEIGHT IS ";V I#
1950 PRINT #2,-AT A FREQUENCY OF ";XM#
1960 LPRINT "AT A FREQUENCY OF ";XM#
1970 PRINT #2,"FREQUENCIES AT -3dB OF PEAK HEIGHT ARE ";XMI#;XM2#
1980 LPRIWr "FREQUENCIES AT -3dB OF PEAK HEIGHT ARE ";XM1#;XM2#
1990 PRINT #2,"THE FILE NAME FOR THIS DATA IS ";A$
20 LPRINT "THE FILE NAME FOR THIS DATA IS ";A$
2010 LPRINT
2020 PRINT #2,"THE MATERIAL TESTED WAS ";M$
2030 LPRINT "THE MATERIAL TESTED WAS ";M$
2040 PRINT #2," THE BEAM LENGTH WAS ";L$
2050 LPRINT "THE BEAM LENGTH WAS ";L$
2060 PRINT #2, "THE DATE IS ";DATE$
2070 LPRINT "THE DATE IS ";DATES
2080 LPRINT CHR$(12);
2090 CLOSE #2
2095 Y = Y+1
2100 INPUr "WOULD YOU LIKE TO DO ANOTHER CURVE FIT ";AS
2110 IF A$="Y" OR A$="y" THEN GOTO 2130
2120 GOTO 2150
2130 CLS
2140 GOTO 90
2150 END



Appendix D

Processing Procedures used for Fabrication of Composite Materials

260
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VACUUM BAG

-SOLID RELEASE f

PRESSPnRE PG A-

SOLID RELEASE FIlM

S__ SRFACE BLEEDERý

• ---- '---/ / t PO ROUS RE tIrLs7 :iE:

US-

VACUUM SEER TAPE vo M

FIGURE 44 V acuum bag layup used for processing composite materias
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CURE CYCLEI FOR AS4/,I5501 -6
and S2-Ciass/3501 -0

400-

Hold at 355°F for 2 hours
350-

!,300- P000oo 0

0 C-)

LJ250- Hold at 2100'F
for 1 hour Apply 90 psi pressure

_D 200- ard vent vacuum at 25 osi

-150-L 0-Relecse pressure

DLJ
~Ž100-

Li
50-

50
0 - I-' I I I I I I ' 11 r 1 r' 1-- • 'T1 -I

0 30 60 90 120 150 180 210 240 2-/0 300 330

TIME (MIN)

1 Apply 28 inches vacuum.
2 PHeat port to 210uF at 1 -5 0 /min-
3 Hold at 210°F for i hour.
4 Apply 90 psi pressure. Vent va'uum when pressure reaches 25 psi.
5 Raise temperature to 355°F at 1-5 0 /min.
6 Hold temperature at 355'F for 2 hours.
7 Cool to 150'F at rate of 1-5 0 /rnin.
8 Vent pressure at 150°F.
9ý Hold at 355 0 F for 4 hours.
110) Cool Ito 75OF at rote of 20/rnin. and vent pressure.

FIGURE 45 Autoclave cure cycle used for composite materials



APPENDIX E

Loss Factor vs. Frequency for Glass/epoxy and Graphite/epoxy

Table 19: Flexural Damping LIoss Factor Results for 90' Unidirectional AS4/3501-6

Beam Length First Resonant Loss Factors Ave. Loss Facor Standard Dev.
(in) (liz) (x 10-4) (x 10 -4) (x 1O-4)

54.61
8.00 25.05 47.92 53.98 3.06

57.01
56.39
58.94
57.29 60.778 5.63

7.00 33.27 58.58
71.95
57.12 "__
54.26
63.51

6.00 43.89 61.03 58.43 5.29
50.20
63.15

70.6279

68.0501
4.00 93.45 76.4936 71.60 4.70

77.4548
65.3781

-63.0139 -_

63.558
3.00 163.12 59.9878 65.43 5.00

74.7062
65.8927
81.4684

61.926
2.50 221.12 69.3177 72.35 6.53

73.3073
75.7239
59.3865---

1.50 685.49 51.9849 57.30 5.76
65.7985
52.0188

263
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Table 20: Flexural Damping Loss Factor Results for 0° Unidirectional AS4/3501-6

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.'kin) (hz) (X 10-4) (x 10-4) (x 10-4)

!0.34 48.51 40.8 34.06 6,75
27.31
47.05

9.38 60.66 33.76 34.01 10.55
21.22
40.43

7.25 100.23 32.4 40.29 3.87
48.04
50.97

5.00 209.93 47.66 49.51 1.38
49.89
31.04

4.50 253.37 27.25 29.96 1.76
31.89
29.66
34.91

4.00 326.61 27.91 34.67 5.42
41.18
62.18
62.3

66.57
3.50 427.59 70.1 65.45 3.68

60.66
65.54
70.79
59.58
64.73

3.25 486.56 51.42 59.20 4.36
59.16
61.09
46.46
50.32

3.00 567.15 41.35 47.2 3.28
47.61
50.24
38.32
33.89

2.75 671.08 41.35 39.82 5.52
48.59
43.96
32.83
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Table 21: Flexural Damping Loss Factor Results for 4450 Cross Ply AS4/3501-6

Bearn Length F•'-siResonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 104) (x 10-4) (x 10 4)

74.01
79.25

8.00 28.10 61.31 71.43 5.84
71.29
71.28
108.8

115.53
6.50 43.07 113.9 113.189 2.29

113.85
113.87
85.65
100.33

6.00 50.81 95.76 93.10 5.28
88.61
95.15
61.36
66.84

5.00 73.74 68.51 64.02 4.56
67.G6
56.31

51.51
61.20

4.00 117.44 57.63 54.49 4.18
50.90
51. 21 __
51.76
40.67

3.00 214.42 47.37 52.18 8.18
64.95
56.15
57.06
47.51
60.5"7

2.50 317.1 51.42 57.40 6.20
64.93
62.89

2.125 441.12 54.52 60.75 8.25
70.08
54.66
48.09
60.03
65.95
71.95
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Table 22: Flexurdl Damping Loss Factor Results for 90' Unidirectional S-2 Glass/3501-6

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 10-4) (x 10-4) (x 10-4)

72.48 8
83.41

11.00 14.77 68.24 78.44 6.81
82.47
85.60
54.26
60.42

10.00 17.95 49.28 57.84 5.62
59.47
65.76
52.90

9.00 22.34 54.46 53.71 2.84
49.81
57.69
73.24
75.29

8.00 28.38 69.25 77.76 6.62
85.23
85.81
62.73
7 4.44

7.00 37.10 78.63 70.20 6.15
63.70
71.52
54.22
62.74

6.00 50.26 66.22 60.76 3.95
61.05
59.5782.58
82.06

5.00 71.36 89.66 87.42 6.26
84.10
98.73
76.76
69.17

4.00 104.32 76.58 71.00 6.03
72.09
60.37
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Table 22: Flexural Damping Loss Factor Results for 90' Unidirectional S-2 Glass/3501-6
(cont)

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 10-4) (x 10-4) (x 10-4)

96.16
78.11

3.00 192.23 80.55 87.74 8.42
84.75
99.15"64.48

78.71
2.50 280.22 80.28 80.81 9.34

91.16
88.42
119.41

2.00 423.35 108.93 99.52 17.56
72.29
97.37
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Table 23: Flexural Damping LOss Factor Results for 0' Unidirectional S-2 Glass/3501-6

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 0-4) (x 10-4) (x 10-4)

53.98"
61.01

8.50 41.07 55.52 58.41 3.30
62.86
58.67
52-.66
58.20

8.00 46.30 62.96 58.38 3.59
56.84
61.25
45.70
75.80

6.50 70.40 56.50 65.75 11.87
75.98
69.79
58.58
53.14

6.00 81.70 59.74 55.47 4.78
58.78
47.11
61.74

97.30 62.96
5.50 61.23 63.05 3.65

59.37
69,98
66.85
60.94

4.00 180.80 73.47 66.35 5.59
71.33
59.18
70.65
74.19

3.25 269.90 72.42 71.18 1.99
70.34
68.30
60.95
65.57

2.75 381.50 50.81 59.15 5.78
54.05
64.35
66.89
71.28

2.50 451.50 69.40 68.92 1.56
69.49
67.54
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Table 23: Flexural Damping Loss Factor Results for 0' Unidirectional S-2 Glass/3501-6
(cont)

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 10 -4) (x 10-4) (x 10-4)

44.55
51.11

2.25 555.60 33.64 42.82 6.66
48.11
36.67
44.60
26.85

2.00 696.60 42.78 43.34 0.89
42.65
24.51
82.T72
56.12

1.75 898.70 94.74 83.29 12-77
91.27
89.77
85.11
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Table 24: Flexural Damping Loss Factor Results for +451 Cross Ply S-2 Glass/3501-6

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) (hz) (x 104) , (x 10-4) (x 10-4)

42.94
41.44

10.10 55.37 02.35 51.37 8.64
60.34
49.78
77.07
68.99

8.00 86.33 (2.65 71.30 5.53
70.29
77.50
75.13
76.41

6.50 133.66 80.39 75.69 4.84
66.84
79.66
68.68
61.74

5.00 221.02 59.73 69.41 12.05
55.29
86.33
84.66
94.61
91.68

4.00 341.03 94.86 96.99 8.40
113.71
87.16
99.93
102.69
105.79

3.50 446.27 96.89 100.18 3.59
99.19
96.34
88.76
102.08

3.125 565.78 98.48 93.07 7.21
81.69
94.32
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Table 24: Flexural Damping Loss Factor Results for +45' Cross Ply S-2 Glass/3501-6
(cont)

Beam Length First Resonant Loss Factors Ave. Loss Factor Standard Dev.
(in) OW(z) (x 104) (x 0-4) (x 10-4)

106.46
123.64

2.875 635.28 104.93 106.08 11.02
99.70
113.58
88.15
123.86
94.43

2.625 746.27 103.06 108.93 14.63
133.45
95.35
103.44
157.41
159.06

2.5 820.36 113.57 126.83 23.34
100.77
106.04

1_ 1 1 124.15 1 1



Appendix F

Statistical Analysis of the Damping Loss Factor for Glass/epoxy and Graphite/epoxy

TABLE 26 Statisticai -values for use in Equation 160 for 900 S-2 Glass/3501-6

S-2 GLASS13501-6 900
FREQUENCY T-VALUES AVERAGE STD DEV NO.OF

(hz) (Confidence Level) Loss Factor SAMPLES
14.77 5.217 78.44 6.81 5

(99%)
17.95 1.325 57.84 5.62 5

(90%)
22.34 4.074 53.71 2,84 4

(99%)
28.38 0.923 77.76 6.62 5

(95%)
37.10 2.890 70.20 6.15 5

(99%)
50.26 8.050 60.76 3-§5 5

(99%)
71.36 4.227 87.42 6.26 5

(99%)
104.32 3.615 71.00 6.03 5

(99%)
192.23 1.223 87.74 8.42 5

(85%)
280.22 2.068 80.81 9.34 5

(96%)
423.35 99.52 17.56 4
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TABLE 27 Statistical values for use in Equation 160 for 00 S-2 Glass/3501-6

S-2 GLASS/3501-6 00
FREQUENCY T-VALUES I AVERAGE STD DEV NO. OF

(hz) (Confidence 1wel) Loss Factor SAMPLES
41.1 0.0126 58.41 3. - 5

(<50%)
46.3 1.149 3 3.59 5

(85%)
70.4 1.622 64.75 11.87 5

(92%)
81.7 2.820 55.47 4.78 5

(98%)
1.105 63.05 3.65 5
(85%)

180.8 1.819 66.35 5.59 5
(94%)

269.9 4.400 71.18 1.99 5
(99.5%)

381.5 3.648 59.15 5.78 5
._99.5%)

451.5 3.53F 68.92 1.56 5
(99.5%)

555.6 0.132 42.82 6.66 5
(55%)696.6 3 .23T0 -- 43T.34 0.89 3

(99.5%) ____

-"---W8.7(99.5%) 83.29 12.77 6
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TABLE 28 Statistical values for use in Equation 160 for ±45' S-2 Glass/3501-6

S-2 GLASS/3501-6 +450
FREQUENCY T-VALUES AVERAGE STD DEV NO.OF

(hz) (Confidence Level) Loss Factor SAMPLES
55.37 4.340 51.37 b.64 5

(99.5%)
86.33 1.336 71.30 5.53 5

(89%)_
133.66 1.087 75.69 4.84 5

(85%)
221.02 4.599 69.41 12.05 6

(99.5%)
341.03 0.786 90.99 8.40 6

(77%)
446.27 1.974 1 3.59 5

(95%)
565.78 2.257 93.07 75

(97%)
635.28 0.7'8W 16.08 11.02 6

(63%) --_
746.27 1.413 14.63 4 6

(90%) 1 1
820.36 126.83 23.34 6I __________ __________...[_______ ________
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TABLE 29 Statistical values for use in Equation 160 for 900 AS4/3501-6

AS4/3501-6 900 _-

FREQUENCY T-VALUES AVERAGE STD DEV- NO. OF
(hz) (Confidence Level) Loss Factor (x 10-4) SAMPLES

(x 104)
25.05-- 2.080 53.98 3.608(96%)
33.-27 .678 60.776 5

(72.5%)
43.89 4.161 58.432 5.290 5

(99.5%)
91.45 2.009 71.601 4.701

(96%)5.16i3.12" 1.880 65.432 5.004 5

(95%)
221.12 3.61 -72.34 6.5

(99.5%)
-685.49 57-=7 5.760 4
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TABLE 30 Statistical values for use in Equation 160 for 00 AS4/3501-6

AS4/3501-6 00
FRE UENCY T-VALUES AVERAGE STD DEV NO."OF

(hz) (Confidence Level) Loss Factor (x 10.4) SAMPLES
_ _ _(x 10-4)

48,51 0.005795 34.06 6.745 2

60.66 .882 34.01 10.547 3(77%)

100.23 2.444 40.29 - 3.6863
(95%)

209.93 15.85 49.51 1.378
(99.5%)

253.37 1.669 29.96 1.755 4
(91%)

326.1- 10.661 34.66 5.420 3
(99.5%)

427.59 2.692 65.45 3.83 7(97%)1
48.5 0 0 1 <0II-,'', .).. -,.35-5 5

(99.2%)
567.15 2.615 47 3.284 5

(96.2%) :E6•71.08- 39.82 -5 75-11
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TABLE 31 Statistical values for use in Equation 160 for +45' AS4/3501-6

AS4/3501-6 ±450
FREQUENCY T-VALUES AVERA E STD DEV NO. OF

(hz) (Confidence Level) Loss Factor SAMPLES
28.10 14.906 71.43 5. 5

(99.5%)
43.07 7.811 113.19 2.287 5

(99.5%)
50.81 9.325 93.10 5.277 5

(99.5%)
73.74 3.445 64.02 4.558 5

(99.5%)
117.44 .52 54.49 4.181 5

(70%)
214,42 1.206 52.18 8.8 5(86%)
317.1 .815 57.4 6.19w- 6

(78%),.441i260.75 7.48 7



Appendix G

Loss Factor for 5208 Epoxy

TABLE 32 Loss Factor as a Function of Frequency for 5208 Neat Epoxy Resin

Frequency Loss Factor Average Loss Factor Standard Dcv.
(hz) (x 10-4) (X 10-4) (X 10-4)

180.57
199.78

50 144.72 194.52 29.72
225.28
_222.24

181.36
210.43

102.3 190.75 197.97 9.85
197.51
207.68
200.11
229 .T3
177.08

227.85 193.41 207.24 20.70
230.82
205.68
213.05
230.65

432.15 221.06 238.76 27.46
278.11
275.34
214.28
228.72
285.81

696.75 309.39 272.06 27.18
278.23
258.14
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